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Abstract
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1 Introduction

The dominant paradigm in the literature studying limits to arbitrage and arbitrage
in general is the competitive arbitrageur paradigm, whereby arbitrageurs are atomistic. Yet
in practice, we often observe just a handful of large arbitrageurs operating in some markets,
because of high fixed costs of entry or owing to economies of scale. These arbitrageurs may
act strategically. Moreover, in many applications, arbitrageurs interact repeatedly, which
gives rise to repeated game considerations. An environment incorporating these features
may offer a better description of arbitrageur interaction in markets that are more opaque
and concentrated.

In this paper, we contribute to the limits-to-arbitrage literature by introducing re-
peated game considerations. Intermediaries, who act as arbitrageurs, face fixed costs of
market entry. We show that in repeated game equilibria, arbitrageurs do not necessarily
enter all possible markets, as they would in a one-shot Nash equilibrium. Instead, it is more
profitable for the intermediaries to specialize in harvesting arbitrage opportunities in their
“natural” markets, in which their fixed costs are low or zero, and enter other markets only
when no (or few) other intermediaries conduct arbitrage activities in those markets. This
is a “tacit collusion” equilibrium of a repeated game, which results in higher (per-period)
arbitrageur profits, compared to those in one-shot games.

As a laboratory for the study of arbitrageur interactions, we use the so-called dividend
play, a strategy available to the intermediaries in the U.S. options market which produces
(virtually) riskless arbitrage profits. These profits derive from call options left suboptimally
unexercised before the underlying stock goes ex-dividend. Exploiting transaction-level data,
we are able to accurately identify arbitrageur trades in the dividend play strategy in each
option contract. We document that only 57% of arbitrage opportunities – pertinent call
option contracts – attract entry of arbitrageurs, and these arbitrage opportunities are not the
most profitable. This is consistent with our model’s prediction that the remaining seemingly
unexploited arbitrage profits are fully harvested by incumbent natural intermediaries and
in the data we should not observe other arbitrageurs’ entry. This lack of entry by other
arbitrageurs cannot be explained by their costs or constraints. We further document that
50% of opportunities that attract entry are exploited by only one arbitrageur. This is
consistent with the model’s implication that, for markets (contracts) in which there is no
natural intermediary, it is profitable for arbitrageurs to specialize and to harvest arbitrage
profits only in a subset of available contracts.

Here is how the model works. There are three markets with one arbitrage opportunity
of fixed value each. There are two risk-neutral intermediaries who exploit these opportunities.
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The first (second) market is the natural market for the first (second) intermediary. A natural
market is defined as a market with zero or lower fixed costs of entry. Examples of natural
markets include securities in which an intermediary is already a market maker or a major
dealer and thus has a natural advantage in monitoring and accessing potential arbitrage
opportunities in these securities. More generally, economies of scale could be creating natural
markets for intermediaries. In all other markets, intermediaries in our model face (per-
period) fixed costs of entry. Intermediaries act strategically, choosing which markets to
enter and, conditional on entry, how much resource to commit to each market. The share
of arbitrage opportunities that is captured by them in each market is proportional to their
market share. The game is symmetric in payoffs and we focus on symmetric equilibria.

We first consider a one-shot game. The only Nash equilibrium in that game is one in
which the intermediaries enter all markets and equally split the arbitrage opportunities in
them. This split, however, does not maximize the joint welfare of the intermediaries. In a
welfare-maximizing allocation, arbitrageurs specialize in a subset of markets and thus reduce
the total fixed cost paid, while still harvesting the same arbitrage gains. A cooperative equi-
librium of this type is not a Nash equilibrium of a one-shot game but it becomes a subgame
perfect equilibrium of an infinitely-repeated game, supported by standard trigger strategies.
This equilibrium is known in the industrial organization literature as a tacit collusion equi-
librium (Tirole (1988)). The term “tacit” conveys that the equilibrium does not require any
explicit agreements between intermediaries. In the tacit collusion equilibrium in our model,
intermediaries do not enter each others’ natural markets and alternate their entry in the
third market. This results in the minimum per-period fixed costs. The testable predictions
of the model is that in the data we should observe no market entry into intermediaries’ nat-
ural markets and observe entry of a limited number or arbitrageurs – just one in our model
– in markets that are neither intermediaries’ natural markets.

The U.S. options market offers a unique laboratory to test our theory. We are able to
identify an arbitrage opportunity, for which we observe arbitrageur entry and the amount of
resources they commit to exploiting it with high accuracy. Most of related literature on limits
to arbitrage has focused on the effects of arbitrage on prices, normally because quantities
are not observed in non-proprietary data. Our setting is an exception. In fact, the effects
on prices are not relevant for our application. An arbitrage opportunity, as in our model,
is best thought of as a windfall gain, which accrues to arbitrageurs in proportion to their
market shares. The opportunity results from a failure of investors to exercise in-the-money
call options before the underlying stock or exchange-traded fund (ETF) goes ex-dividend
when it is optimal to do so.1 To benefit from it, arbitrageurs engage in “dividend play,”
1We note that sometimes call options may be purchased as part of any strategy that involves holding multiple
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an arbitrage strategy that diverts windfall gains from the original writer of the option that
was suboptimally left unexercised by dormant investors. Option writers receive this gain in
expectation, as the Options Clearing Corporation (OCC) randomly assigns options writers
who receive an exercise notice and must deliver the underlying. The writers who are not
assigned receive the windfall capital gain. Dividend play is a dilution strategy in which
on the last cum-dividend date, arbitrageurs write an extremely large number of call option
contracts, maximizing the probability that the gain from exercise mistakes is assigned to
them rather than to the original option writer. To hedge the large short position required
for the strategy, arbitrageurs simultaneously establish an offsetting large long position in a
similar contract. Dividend play trades are usually prearranged by pairs of arbitrageurs, who
serve as counterparties to each others’ long and short positions, and in our sample, actual
transaction prices are close to the midpoint of the bid-ask spread. So price impact is not
a concern in our application; the windfall gain is fixed and it is effectively divided pro-rata
between arbitrageurs who participate in the dividend play strategy, as in our model.

The dividend play strategy is normally executed on a physical exchange floor. This
is because some exchanges facilitate this trade by capping the fees for this strategy for floor
participants,2 and because the floor offers pairs of arbitrageurs an opportunity to execute
(large) bilateral trades on agreed terms, without exposing them to other market makers’
quotes. Our empirical strategy for classifying dividend play trades relies on the flags for
floor trades in the transaction-level Options Price Reporting Authority (OPRA) data. With
most of the options trading being electronic, exchange floors are more akin to a library than
to a bustling trading floor of the past. So, like in our model, there is usually a small number
of participants in the dividend play arbitrage, who interact repeatedly with each other on
pre-scheduled (last cum-dividend) dates.

Since the dividend play strategy requires opening extremely large positions, the daily
trading volume on the last cum-dividend dates in in-the-money call options targeted by the
strategy often exceeds trading volume on the remaining dates by several orders of magnitude.
Even for the largest S&P 500 ETF, SPY—the ticker with the most actively traded options
in 2021—the last cum-dividend date trading volume is typically 14–53 times larger.3 In

option contracts. In those circumstances, or whenever transaction costs outweigh profits from early exercise,
exercising an option may not be optimal.

2For example, PHLX imposes daily fee caps for floor market makers and other floor traders engaging in
dividend play. See, e.g., https://listingcenter.nasdaq.com/rulebook/phlx/rules/phlx-options-7,
accessed July 26, 2023, for the dividend strategy fee caps imposed by the PHLX options exchange. More
than two-thirds of dividend play transactions in our sample are executed on PHLX. Dividend play is not
the only strategy that benefits from fee caps. For example, PHLX offers similar fee caps for five other
arbitrage strategies.

3The lower bound compares the average last cum-dividend date dollar trading volume in call options to an
average across all days in our sample, while the upper bound compares to the average volume in a week
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this paper, we often refer to the last cum-dividend dates on which dividend play trade takes
place as dividend play dates.

During the recent retail investor boom in options (documented in e.g., Bryzgalova,
Pavlova, and Sikorskaya (2023)), expected profits from the dividend play trades have been
growing rapidly. Most of this profit derives from the sheer increase in open interest due
to investor inflow, coupled with a higher fraction of options that are left unexercised on
dividend play dates. Arbitrageurs take advantage of these increased profits and establish
extremely large long-short positions in pertinent contracts.

There are, however, four striking patterns that emerge from our examination of div-
idend play transactions. First, only 57% of arbitrage opportunities (profitable option con-
tracts) attract arbitrageur entry, which implies that about 50% of potential profits appear
to be left of the table.4 Second, if arbitrageurs do decide to participate in dividend play in
a given contract, they harvest most of available profits in that contract. Third, on average
37% of contracts in the top profitability tercile do not attract entry by arbitrageurs. More
generally, even among very similar profitable contracts, arbitrageurs often enter only a few.
In light of the standard explanations of limits to arbitrage, the first and third patterns are
quite puzzling. Arbitrageurs’ daily fee on dividend play trades is capped by most exchanges
on which dividend play trades take place, so additional fees are not a plausible explanation
for leaving money on the table. Trading costs are quite low because dividend play transac-
tions are executed close to the midpoint of the bid-ask spread. Capital constraints are also
unlikely to explain the findings because market participant exposure is normally computed
at a ticker level, and so the large long and short positions in contracts on the same ticker,
required for the dividend play trade, are netted to zero.

The fourth pattern concerns the number of arbitrageurs that engage simultaneously
in dividend play in a given contract. We take advantage of the granularity of our data to
make inferences about this number. Strikingly, in 50% of the contracts, in which we detect
arbitrageur entry, we estimate that the entire profit is captured by a single arbitrageur.
Across all contracts, the number of arbitrageurs simultaneously participating in dividend
play in a given contract exceeds 4 in only 10% of the cases and exceeds 10 in less than 1%.
This is surprising because there are no obvious restrictions on free entry of other arbitrageurs
who already engage in dividend play in other contracts. Partly owing to their sheer size and
distinct execution patterns, dividend play trades are easy to detect in transaction-level data
(e.g., OPRA). Arbitrageurs are therefore aware of the history of other arbitrageurs’ dividend

prior to the last cum-dividend date.
4Table 4 in the Appendix quantifies forgone profits of market makers in the top 40 most popular underlying
stocks and ETFs for the dividend play strategy in our sample.
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play activity in a given contract before they decide to engage in dividend play in it.
The implications of our model are consistent with all of the above patterns. One may

interpret the contracts in which we observe no entry as natural markets of some arbitrageurs.
Many arbitrageurs in this strategy are also market makers, who write options that retail
investors buy (and fail to exercise optimally). Most of dividend play is executed on only
two exchanges. Using an additional data source covering one of them,5 we are able to show
that market makers are indeed net short on average in tickers most popular with retail
investors (Figure 5 in the Appendix). These market makers then do not incur any fixed
costs and simply pocket the windfall gains on the corresponding written options already
in their inventory, unless other arbitrageurs enter and compete away those gains. This fits
exactly our definition of a natural market for an intermediary. Our empirical tests reveal
that arbitrageurs are less likely to enter profitable contracts that have positive retail buy
imbalances (and hence market makers likely hold short positions in these contracts in their
inventory). In contrast, in written contracts that neither intermediary has in their inventory,
we should expect arbitrageur entry so as to harvest the gains. This entry, however, should
be limited. The costs of arbitrage are fixed because of the exchanges’ daily fee caps on
dividend play. Our model implies that arbitrageurs should therefore specialize and enter
only a subset of markets, with the tacit collusion equilibrium corresponding to only one
arbitrageur entering a market (contract) at a time.

There are other potential explanations of the empirical patterns we document. It is
possible that the reluctance of some firms to engage in the dividend play arbitrage could be
explained by the operational risk of the trade.6 Another possibility is the presence of poten-
tially prohibitive clearing fees, faced by market participants. Unfortunately, information on
clearing fees is not public, and so we have not been able to verify this potential explanation.
It is also possible that there is a stigma associated with the dividend play strategy, since it
is frowned upon by the U.S. Securities and Exchange Commission (SEC).

Finally, we discuss the difficulties of devising effective regulation in the derivatives
market. Concerned about the impact of dividend play trades on the orderly functioning of
the market, in 2014 the SEC approved a new rule designed to make the strategy impractical,7

which resulted in much lower trading volumes on dividend play dates. However, the recent
dramatic increase in options trading by inexperienced retail investors appears to have led
5We thank Nasdaq Global Data Products for generously sharing their historical PHOTO and NOTO End-
of-Day data with us. PHOTO covers the PHLX exchange, in which we observe the majority of the trading
volume associated with dividend play.

6For example, a human error in the dividend play strategy inflicted a $10 million loss on Bank of America Mer-
rill Lynch. See https://www.reuters.com/article/us-usa-options-apple-idUSKBN0IQ2FA20141106.

7See https://www.sec.gov/rules/sro/occ/2014/34-73438.pdf. We elaborate on this rule in footnote 15.
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to a resurgence of the strategy, whereby arbitrageurs have found a way to circumvent the
barriers created by the SEC rule. We propose a rule change that may curtail the strategy.

Our paper is related to the limits-to-arbitrage literature, such as Gromb and Vayanos
(2002) and Shleifer and Vishny (1997). In most of this literature, arbitrageurs are competitive
while ours are strategic.8 Strategic trading has been emphasized in the influential strand
of market microstructure literature starting from Kyle (1985).9 Our focus is not on price
impact but on multi-market arbitrageur interactions and specialization in a repeated-game
setting. Arbitrage opportunities are fully exploited in our case, and limits to arbitrage should
be understood as (endogenous) limits on the number of arbitrageurs in a given market. Our
model is consistent with recent evidence of Siriwardane, Sunderam, and Wallen (2022) (see
also Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2020)), that strongly suggests that
arbitrage is segmented and arbitrageurs specialize in a small set of arbitrage opportunities.

The closest paper considering a repeated game in financial markets is a tacit collusion
model of Dutta and Madhavan (1997). As in the classical industrial organization literature,
the authors consider pricing strategies that give rise to prices above competitive levels. Their
model explains the puzzling tendency of NASDAQ market makers in equities to avoid odd-
eighth quotes, uncovered in an influential paper by Christie and Schultz (1994). There is of
course a vast literature in industrial organization on tacit collusion (see Ivaldi, Jullien, Rey,
Seabright, and Tirole (2007) and references therein), but it normally studies the behavior
of price-setting firms. Our mechanism is novel in that the welfare gain to the players from
tacit collusion is generated by reduced fixed costs from selective market entry as opposed to
higher prices. The application to arbitrage in financial markets in also novel.

Our empirical application, dividend play, has been considered in Hao, Kalay, and
Mayhew (2009) and Pool, Stoll, and Whaley (2008), who were the first to describe this
strategy. Unlike us, they do not compute the number of arbitrageurs in a given contract and
do not document the widespread selective entry of arbitrageurs in profitable contracts, which
is our primary focus. Our paper also relates to the literature on optimal option exercise by
investors. It has been previously documented that not all American options are exercised
rationally (e.g., Poteshman and Serbin (2003)). Battalio, Figlewski, and Neal (2020), Cosma,
Galluccio, Pederzoli, and Scaillet (2020), Jensen and Pedersen (2016), and Barraclough and
Whaley (2012) focus on early exercise decisions and show in more recent data that a fraction
of investors still fail to exercise their options optimally. More generally, the literature has
documented a variety of mistakes that retail investors make (see, e.g., Barber and Odean
8Fardeau (2021), Zigrand (2004), and Basak and Croitoru (2000) and also consider strategic arbitrageurs.
Their focus is different from ours and they do not consider repeated games.

9In this strand of literature, Goldstein and Guembel (2008) discuss market manipulation.

6



(2001), Calvet, Campbell, and Sodini (2007), and Barber and Odean (2013)).

2 Model

In this section, we develop a game-theoretic model of arbitrage in segmented mar-
kets with a small number of arbitrageurs, who repeatedly interact with each other. In the
empirical part of the paper, we focus on a specific application, which is likely to satisfy the
model’s assumptions – dividend play – and show that the patterns of arbitrage we observe
in the data are consistent with our model’s predictions. The model, however, is applicable
more broadly, to environments which feature strategic arbitrage with repeated arbitrageur
interactions.

2.1 Economic environment

Time is discrete and the horizon is infinite. There are three markets,M1,M2, andM3,
each with one arbitrage opportunity. For simplicity, the per-period value of the arbitrage
opportunities in the first two markets is the same, and we denote it by A. The per-period
value of the arbitrage opportunity in the third market is A∗.

There are two special intermediaries, 1 and 2, who are the natural arbitrageurs in
markets M1 and M2, respectively. That is, Intermediary 1 has a zero cost of harvesting the
arbitrage opportunity in market M1 and Intermediary 2 in market M2. Neither of the two
intermediaries is a natural arbitrageur in market M3. Both intermediaries are risk-neutral.
In what follows, we use the terms “arbitrageur” and “intermediary” interchangeably.

Each intermediary has 1 unit of resource that she allocates across the three markets.
Intermediary 1’s per-period costs of exploiting the arbitrage opportunities in markets M1,
M2, and M3 are 0, f , and f ∗, respectively, and those of Intermediary 2 are f , 0, and f ∗.
The fixed cost is incurred only if an intermediary enters a market, i.e., commits a non-zero
resource to the market. If an intermediary does not enter a market, its payoff in that market
is 0.

Intermediary 1’s per-period payoff is

π1(k1
1, k

2
1, k

3
1) ≡ A

k1
1

k1
1 + k1

2
+ A

k2
1

k2
1 + k2

2
+ A∗

k3
1

k3
1 + k3

2
− f 1k2

1>0 − f ∗ 1k3
1>0, (1)

where resources allocated to each of the three markets (k1
1, k

2
1, k

3
1) are choice variables and
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k1
1 + k2

1 + k3
1 ≤ 1. Analogously, Intermediary 2’s per-period payoff is

π2(k1
2, k

2
2, k

3
2) ≡ A

k1
2

k1
1 + k1

2
+ A

k2
2

k2
1 + k2

2
+ A∗

k3
2

k3
1 + k3

2
− f 1k1

2>0 − f ∗ 1k3
2>0, (2)

where k1
2 + k2

2 + k3
2 ≤ 1. The intermediaries therefore harvest the arbitrage opportunities in

proportion to their market share of resources invested in a given market. In the special case
of k1

2 = 0, Intermediary 1 harvests the entire arbitrage opportunity in market M1, even if
she commits no resources to that market. Likewise, if Intermediary 1 refrains from entry in
market M2, the entire arbitrage profit A accrues to Intermediary 2, regardless of the amount
of resource in that market. If none of the intermediaries enter market M3, the arbitrage
opportunity in that market remains unexploited.

Our main focus is on repeated games. The time discount factor is δ. The risk-neutral
intermediaries act strategically and choose their best response per-period resource allocations
(k1
it, k

2
it, k

3
it) to maximize

∞∑
t=0

δtπi(k1
it, k

2
it, k

3
it),

taking the resource allocation of the other intermediary as given. We will also consider
Pareto efficient equilibrium allocations, which maximize social welfare, i.e.,

µ1

∞∑
t=0

δtπ1(k1
1t, k

2
1t, k

3
1t) + µ2

∞∑
t=0

δtπi(k1
2t, k

2
2t, k

3
2t), (3)

subject to the resource constraints k1
it + k2

it + k3
it ≤ 1, i ∈ {1, 2}, where µ1 and µ2 are the

Pareto weights. Social welfare here is understood in the game-theoretic sense: it takes into
account welfare of the two players (the intermediaries), but not any other agents in the
economy. With a restriction on the time discount factor δ, Pareto efficient equilibria can
be supported as non-cooperative (subgame perfect) equilibria of a repeated game, as we
demonstrate below.

The concept of arbitrageurs’ natural markets is novel to this paper. We think of
natural markets as the ones in which an arbitrageur incurs lower costs than the competition.
This can happen if an arbitrageur is an intermediary that is close to the order flow in the
market (e.g., a market maker or a large high-frequency trading firm) or has a structure
of its balance sheet that gives it a natural advantage in exploiting a particular arbitrage
opportunity. One example is the options market arbitrage from the trading floor that we
use as a laboratory in the next section. In other markets, natural hedges may create a
similar environment. For example, Bolton and Oehmke (2013) and Atkeson, Eisfeldt, and
Weill (2015) argue that in credit default swaps (CDS) markets, large banks that hedge their
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exposure by buying/selling CDS contracts are naturally placed to act as CDS dealers and
possibly arbitrageurs, as they are best able to generate enough fee income from trading CDS
to cover the fixed cost of entry. They are also able to use their balance sheets to net large
long and short positions, which saves on required collateral. Similarly, if intermediaries have
structured products on their balance sheets, they may be “naturally” exposed to dividend
risk Mixon and Onur (2017), which makes dividend derivatives their natural markets.

Fixed costs of market access are an important ingredient of our model. Recent limits-
to-arbitrage literature (Siriwardane, Sunderam, and Wallen (2022)) stresses that in practice
arbitrage is segmented, whereby arbitrageurs specialize in one market or a small handful
of markets. Such segmentation would naturally happen in the presence of fixed costs of
arbitrage. We model fixed costs in the natural markets to be zero for simplicity, but what is
key to our implications is that fixed costs in a given market are lower for natural arbitrageurs
in that market.

For the emergence of cooperative or tacit collusion equilibria as subgame perfect equi-
libria in our model, it is important that we consider a repeated game. Repeated interaction
of arbitrageurs commonly occurs in practice. If arbitrage is indeed segmented, it is practical
for the same arbitrageurs to specialize in a given market over time, as opposed to switching
to a different market every period.

Finally, the focus of the model is on the markets with a fixed number arbitrageurs
who act strategically. An important macroeconomic trend of the past few decades is the rise
in industry concentration. (See Grullon, Larkin, and Michaely (2019), Autor, Dorn, Katz,
Patterson, and Van Reenen (2020), and De Loecker, Eeckhout, and Unger (2020).) Financial
intermediation and market making are no exception.10 We believe that it is important to
relax the standard competitive arbitrageur paradigm and to consider strategic arbitrageur
interactions, at least in some more opaque and in more concentrated markets.

2.2 Pareto efficient and Nash equilibria of a stage game

We first consider a one-shot game and derive its Nash equilibrium. Intermediary
1’s best response to Intermediary 2’s actions is the solution to the following optimization
10There are numerous financial markets in which intermediaries have been shown to have market power, such
as agency MBS (An and Song (2023)), Canadian government bonds (Allen and Wittwer (2023)), foreign
exchange derivatives (Wallen (2022)), triparty repo (Huber (2023)), UK government and corporate bonds
(Pinter and Uslu (2022)), and even the market for catastrophe risk (Froot (2001)). Those are the markets
that can potentially be natural markets for some intermediaries.
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problem, taking (k1
2, k

2
2, k

3
2) as given:

max
k1

1 ,k
2
1 ,k

3
1

A
k1

1
k1

1 + k1
2

+ A
k2
i

k2
1 + k2

2
+ A∗

k3
1

k3
1 + k3

2
− f 1k2

1>0 − f ∗ 1k3
1>0, (4)

s.t. k1
1 + k2

1 + k3
1 ≤ 1. (5)

Analogously, Intermediary’s 2 best response is the solution to

max
k1

2 ,k
2
2 ,k

3
2

A
k1

2
k1

1 + k1
2

+ A
k2

2
k2

1 + k2
2

+ A∗
k3

2
k3

1 + k3
2
− f 1k1

2>0 − f ∗ 1k3
2>0, (6)

s.t. k1
2 + k2

2 + k3
2 ≤ 1, (7)

where she takes the resource allocation of Intermediary 1, (k1
1, k

2
1, k

3
1), as given. The best

responses are presented in Lemmas 1 and 2 in the Appendix. The intersection of the best
responses is a Nash equilibrium of the one-shot game. Of specific interest to us is the interior
equilibrium, in which the intermediaries enter all markets.

Proposition 1 (Nash equilibrium) Suppose that a Nash equilibrium in which kji > 0,
i ∈ {1, 2}, j ∈ {1, 2, 3}, exists. Then it is given by a solution to the following system of
equations:

k1
1 =

Λ1

(
A

k1
2

)1/2

− 1
 k1

2, k2
1 =

Λ1

(
A

k2
2

)1/2

− 1
 k2

2, k3
1 =

Λ1

(
A∗

k3
2

)1/2

− 1
 k3

2, (8)

k1
2 =

Λ2

(
A

k1
1

)1/2

− 1
 k1

1, k2
2 =

Λ2

(
A

k2
1

)1/2

− 1
 k2

1, k3
2 =

Λ2

(
A∗

k3
1

)1/2

− 1
 k3

1, (9)

Λ1 = 2
[(
Ak1

2

)1/2
+
(
Ak2

2

)1/2
+
(
A∗k3

2

)1/2
]−1

, (10)

Λ2 = 2
[(
Ak1

1

)1/2
+
(
Ak2

1

)1/2
+
(
A∗k3

1

)1/2
]−1

. (11)

In this paper, we focus on symmetric Nash equilibria. Substituting k1
1 = k1

2, k2
1 = k2

2,
and k3

1 = k3
2 in (8)–(11), we arrive at the following corollary to Proposition 1.

Corollary 1 (Symmetric Nash equilibrium) In a symmetric Nash equilibrium,

(i) the resource allocations to markets M1 and M2 are

k1
1 = k1

2 = k2
1 = k2

2 = A

2A+ A∗
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and to market M3 are

k3
1 = k3

2 = A∗

2A+ A∗
.

Furthermore, k1
1 < k3

1 iff A < A∗.

(ii) each intermediary’s payoff is A + A∗/2 − f − f ∗. The symmetric Nash equilibrium
exists if A/2 ≥ f and A∗/2 ≥ f ∗.

In what follows, we maintain the assumption that A/2 ≥ f and A∗/2 ≥ f ∗ and hence
the symmetric Nash equilibrium reported in Corollary 1 exists. Since the market shares of
the two intermediaries in each market are the same (1), each arbitrage opportunity is split
equally between the two of them. Moreover, the larger the arbitrage opportunity, the more
resources an arbitrageur is willing to commit to exploiting it. This implication is intuitive. In
equilibrium, however, the market shares in all three markets end up being the same because
the best response to the opponent who commits more resources to a market is to commit
more resources herself.

In the symmetric Nash equilibrium, arbitrageurs enter all three markets, jointly pay-
ing the maximum per-period fixed cost. This allocation is clearly not Pareto efficient. For
example, an allocation whereby both arbitrageurs enter their natural markets but not the
natural markets of their opponents (while still equally splitting the third market), yields
exactly the same gain from harvesting the arbitrage opportunities as in Corollary 1, but at
a lower individual fixed cost. To generalize this reasoning, we turn to exploring the set of
payoffs that maximize social welfare in a stage game.

Figure 1 depicts the Pareto frontier and the symmetric Nash equilibrium of this game.
The Pareto frontier, which is the boundary of the feasible set of payoffs, is represented by
the solid line. To understand its shape, let us start from its rightmost point, denoted by a
triangle (4), which corresponds to the highest possible payoff to Intermediary 1 and zero
payoff to Intermediary 2. The highest payoff achievable by Intermediary 1 occurs when
she enters all three markets and Intermediary 2 enters none. As Intermediary 2 enters its
natural market, M2 (and no other market), the share of the arbitrage opportunity in market
M2, A, captured by Intermediary 1 decreases, while the value captured by Intermediary 2
increases proportionately to its market share of that market. The slanted segment on the
Pareto frontier originating from its rightmost point (4) corresponds to this case. When
Intermediary 1 exits marketM2 (while remaining in marketsM1 andM3), the Pareto frontier
jumps up by the value of the fixed cost f , because of the fixed cost savings when market 2
is left to the natural arbitrageur in that market, Intermediary 2. This allocation is denoted
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Figure 1: Pareto frontier

Symmetric Pareto 

efficient eq.

Symmetric Nash eq.

f

f

A

2A+A* − f− f*

0 A 2A+A* − f− f* Intermediary 1

Intermediary 2

I1: fully captures M1, M2, M3          I2: no entry
I1: fully captures M1, M3                I2: fully captures M2

I1: fully captures M1, half of M3    I2: fully captures M2, half of M3

The Pareto frontier of the stage game is depicted by the solid line. The symmetric Nash equilibrium is
denoted by the star symbol (k), while the symmetric Pareto efficient equilibrium by a circle (l).

by a square (�). The slanted segment right after the jump corresponds to the case in
which Intermediary 1 is operating in markets M1 and M3 and Intermediary 2 in markets
M2 and M3. To maximize the total surplus, it is inefficient for both intermediaries to be in
present in marketM3 at the same time, both paying a fixed cost of operating in that market.
Pareto efficient equilibria that lie on the segment that contains the symmetric Pareto efficient
equilibrium therefore involve randomization, in which Intermediary 1 enters market M3 half
of the time and Intermediary 2 the remaining half (denoted by a circle, l). Since (with
the exception of the natural markets) the problem in symmetric, the remaining part of the
Pareto frontier is the mirror image of the right part of the frontier.

We are going to focus on the Pareto efficient equilibrium that is symmetric in pay-
offs, denoted by a circle (l) in Figure 1. The following proposition formally derives and
characterizes this equilibrium.

Proposition 2 (Symmetric Pareto efficient equilibrium) In the Pareto efficient equi-
librium that is symmetric in payoffs,

(i) the two intermediaries agree to allocate no resources to markets M1 and M2. That is,
(k1

1, k
2
1) = (0, 0), and (k1

1, k
2
1) = (0, 0), and hence the intermediaries fully harvest the

arbitrage opportunities in their natural markets.
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In market M3, the intermediaries randomize their market entry, and agree that only
one intermediary enters at a time. Intermediary 1 plays k3

1 ∈ (0, 1] and captures the
entire market M3 with probability 1

2 and stays away from the market (k3
1 = 0) with

probability 1
2 . Intermediary 2 plays the mirror image of this strategy.

(ii) each intermediary’s expected payoff is A+ A∗/2− f ∗/2.

The Pareto frontier contains a set of cooperative equilibria in this game. Comparing
the intermediaries’ payoffs in the symmetric Nash and Pareto efficient equilibria (Corollary 1
and Proposition 2), denoted by a star (k) and a circle (l) in Figure 1, we see that the
latter is clearly higher. The Pareto efficient equilibrium is a cooperative equilibrium that
involves explicit agreements between players. It is not achievable in a one-shot game if the
intermediaries are playing non-cooperatively. This is because a deviation from playing the
Pareto efficient equilibrium is profitable for each intermediary. Indeed, by entering the other
intermediary’s natural market, the player captures the entire natural market of the opponent,
increasing its payoff in the stage game by A − f . The unique symmetric equilibrium in a
non-cooperative game is the Nash equilibrium.

Achieving a Pareto efficient equilibrium in a one-shot game is possible only if the
intermediaries are making explicit agreements with each other. In an infinitely repeated
game, however, a Pareto efficient equilibrium becomes one of the possible equilibria of the
stage game, and supporting it does not require any explicit agreements between arbitrageurs.

2.3 Tacit collusion in an infinitely repeated game

We now move from the stage game to the infinitely repeated game. Our objective
is to support the symmetric Pareto efficient equilibrium of the stage game, analyzed in the
previous subsection. In the infinitely repeated game, the set of possible strategies expands
considerably, and in particular it now includes strategies that depend on the other intermedi-
ary’s actions in previous periods. This yields a significant enlargement of the set of subgame
perfect equilibria, if the intermediaries are sufficiently patient. Randomization each period
in the third market is also no longer required: the intermediaries can simply implicitly agree
to alternate their entry in the market, i.e., one of them enters in odd periods while the other
in even. Infinite horizon is required because if the horizon were finite, the intermediaries
have an incentive to deviate from the Pareto efficient equilibrium in the last period, which
by backward induction implies that they deviate in all previous periods and therefore the
Pareto efficient equilibrium is not subgame perfect and the only symmetric non-cooperative
equilibrium of this game is the Nash equilibrium of the stage game, played every period.
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To support the symmetric Pareto efficient equilibrium as a subgame perfect equi-
librium, we focus on the following trigger strategy: cooperate and play the Pareto efficient
equilibrium if the other player cooperates and punish any deviation from it by the oppo-
nent by playing the non-cooperative stage game strategies thereafter. Considering again
the symmetric case, in the post-deviation phase the intermediaries therefore play the stage-
game Nash equilibrium computed in Corollary 1 in every stage game forever. The following
proposition makes these statements more precise.

Proposition 3 (Symmetric tacit collusion equilibrium) Consider the following sym-
metric trigger strategy:

Cooperative phase: Cooperate and

(i) allocate no resources to marketsM1 andM2. That is, (k1
1t, k

2
1t) = (0, 0), and (k1

1t, k
2
1t) =

(0, 0), so that the natural intermediaries capture all of arbitrage opportunities in their
natural markets;

(ii) alternate entry in market M3, with Intermediary i entering the market and harvesting
the entire arbitrage opportunity A in odd periods (k3

it > 0, t is odd), and Intermediary j,
j 6= i in even periods (k3

jt > 0, t is even).

Punishment for deviation: If the opponent deviated from the above cooperative strategy
in the previous period, enter all markets (M1, M2, M3) and play purely competitively for-
ever, which results in a Nash equilibrium in each stage game thereafter (Proposition 1 and
Corollary 1).

If both players play the trigger strategy above and δ ≥ A−f−f∗/2
A

, the symmetric Pareto
optimal (or tacit collusion) equilibrium is a subgame perfect equilibrium of the repeated game.

The result of Proposition 3 is consistent with the Folk Theorem of repeated games
(see Fudenberg and Maskin (1986)) that for the time discount factor sufficiently close to 1,
a cooperative equilibrium of the stage game can be supported via a purely non-cooperative
mechanism in a repeated game. An equilibrium of this type is known as a tacit collusion
equilibrium in the industrial organization literature. In contrast to the industrial organi-
zation literature, where players charge higher prices in the cooperative stage, in our model
cooperation involves staying away from a subset of markets so as to achieve the highest the
social welfare (3) by paying the minimum combined fixed cost. This is the novelty of our
tacit collusion mechanism.

We stress that the trigger strategy played by the intermediaries and the resulting
tacit collusion equilibrium does not involve any explicit agreements every period. All that is
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required for the implementation of the strategy is that the intermediaries observe that there
was market entry by other intermediaries in the previous period. In our application that
follows, we observe this information in our non-proprietary dataset.

To better fit our empirical analysis, our model requires a straightforward modification.
Instead of there being one market that is natural for neither intermediary, M3, we need two
markets, M3 and M4, with an arbitrage opportunity A∗ each. The fixed costs of market
entry into markets M3 and M4 are the same and are equal to f ∗. In this game, there is a
symmetric tacit collusion equilibrium in which (i) neither intermediary enters markets M1

and M2, and therefore the arbitrage opportunity accrues to the natural arbitrageur in that
market, and (ii) only one of the intermediaries enters market M3 and the other intermediary
enters market M4. This equilibrium is an equilibrium in an infinitely repeated game, in
which reversion to Nash equilibrium upon a deviation acts as a threat. Proposition 4 in the
Appendix formalizes this discussion.

We conclude the section by presenting several testable predictions of our model.

Testable Prediction 1: The natural markets are fully exploited by the incumbent natural
arbitrageur(s) and in the data we should not observe entry into those markets.

Testable Prediction 2: If a market is neither arbitrageur’s natural market, we should
observe only one arbitrageur entering that market.

Testable Prediction 3: If the arbitrageurs are playing one-shot-game Nash equilibrium
strategies, they enter all markets. The higher the value of the arbitrage opportunity in a
market, the more resources they allocate to that market.

3 Dividend play

In this section, we describe a specific arbitrage strategy, dividend play, for which we
can accurately identify trades of arbitrageurs and examine the properties of these trades.
The environment in which this strategy is executed closely resembles the setup of our model.

3.1 Dataset

Our options data comes from two main sources: OPRA and OptionMetrics. Transaction-
level data from OPRA LiveVol is provided by CBOE. The data ranges from November 4,
2019, to June 30, 2023. It contains all transactions in index, ETF, and equity options on 16
U.S. options exchanges. In our analysis, we exclude index options and focus on single-name
options on equities and ETFs. To compute trade imbalances, we follow the quote rule, which
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classifies trades with prices above (below) the midpoint as “buy" (“sell") trades.11 We use
daily option price, volume, and open interest data from OptionMetrics, available at a con-
tract level for the period between January 4, 1996, and June 30, 2023. We lag open interest
for all the data after November 28, 2000, to have a series of consistent open interest as of
the end of day.12

Our data-cleaning procedure is as follows. Following the literature, we remove the
first 15 and last 10 minutes in the day, canceled trades, trades with nonpositive size or price,
and negative spread (the difference between best ask and best bid). We only keep trades for
which trade price is above (best bid minus spread) and below (best ask plus spread). We
aggregate trades of the same contract with the same quote time, exchange ID, trade price,
and trade type into one line.

We also use data from Nasdaq Options Trade Outline (NOTO) and the PHLX Op-
tions Trade Outline (PHOTO) End-of-Day files with order classification by the originating
counterparty (customers, professional customers, market makers, firms, or broker/dealers).
The data ranges from November 1, 2019, until December 31, 2022.

For all stock data, we use CRSP. We obtain dividend history, stock prices and returns,
outstanding shares, and rolling monthly volatility of daily returns. We rely on the SecId-
PERMNO crosswalk provided by WRDS to link CRSP with OptionMetrics.

3.2 Resurgence of dividend play

Daily trading volume in options on high-dividend stocks in the U.S. exhibits an in-
triguing seasonality, illustrated in Figure 2 for the UPS case. The spikes in trading volume
apparent from the figure occur every quarter, on the last cum-dividend date, that is, the day
before UPS pays a dividend. The average daily traded notional for UPS is $125.3 million on
the last cum-dividend dates and only $2.5 million on the remaining dates. This pattern is
common for options on high dividend paying stocks. Appendix B.3 presents more examples.

On the last cum-dividend dates, arbitrageurs engage in an arbitrage trade known
as the dividend play. This strategy is available only for transactions originating from the
floor of the exchange,13 or, in other words, only to the market participants who must be
11Our results hold if we use the Lee and Ready (1991) algorithm (that is, applying the tick rule to classify
trades at midpoint instead of excluding them). The ticker-level imbalances produced by the two methods
have a correlation of over 90%.

12The lag is due to the change in the reporting format of OptionMetrics. This implies that end-of-day open
interest is measured after option exercises.

13In fact, dividend play could be organized off the exchange floor, but it would then not qualify for transaction
fee caps. In our data, most abnormal volume on cum-dividend dates goes through floor trades on two
exchanges, PHLX and BOX, as we discuss below. We show the distribution of trading volume across all
exchanges in Table 11 in the Appendix.

16



Figure 2: Abnormal trading volume on last cum-dividend dates for UPS

This figure plots daily trading volume for all call option contracts on UPS, in millions of U.S. dollars, as
reported in OptionMetrics. The dashed lines indicate the last cum-dividend dates.

physically located on the trading floor. The strategy involves establishing long and short
options positions that are so large that an operational error may potentially destabilize the
market. Concerned about the impact of dividend play trades on the orderly functioning of
the market, in 2014 the SEC approved a new rule designed to make the strategy impractical
(see footnote 7), which resulted in much lower trading volumes on dividend play dates.
However, the recent dramatic increase in options trading by inexperienced retail investors
appears to have led to a resurgence of the strategy, despite the barriers created by the SEC
rule.

The goal of the dividend play strategy is to take advantage of inattentive investors
who fail to exercise their call options on dividend-paying stocks when it is optimal to do so.
It is optimal to exercise a call option if the value of exercising it on the last cum-dividend
date and collecting a dividend exceeds the value of the call the next day, when the stock goes
ex-dividend. Computing option values involves using the Black-Scholes-Merton formula or
a more sophisticated option pricing method, which is typically difficult for novice investors.
Alternatively, some retail investors may be unaware of the possibility of early exercise or
are simply inattentive.14 Since a fraction of in-the-money call options remains suboptimally
unexercised, the writers of these options would not be asked to deliver the stock and would
14There might be other reasons why investors do not exercise, such as costs of unwinding more complex
strategies. Hao, Kalay, and Mayhew (2009) show that dividend play profits outweigh such costs in most
cases.
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Table 1: Dividend play: An example

OIt−1

New
posi-

tions(t)
Available
for ex.

No. ex-
ercised

Prob.
non-assign.
orig. option

writer

Prob.
non-assign.
arbitrageur

Gain
per
share

Expected
gain orig.
option
writer

Expected
gain
arbi-

trageur
(A) (B) (C) (D) (E) (F) (G) (E*G*100) (F*G*100)

Case 1. Optimal exercise
Customer 1 0 1 1 0 5 0

Case 2. Suboptimal exercise

Case 2.1. Without dividend play
Customer 1 0 1 0 1 5 500

Case 2.2. With dividend play
Customer 1 0 1 0 1/101 5 5
Arbitrageur 0 100 100 100 100/101 5 495
Total 1 100 101 100

This table illustrates the dividend play strategy. Date t refers to the last cum-dividend date, and OIt stands for the
open interest on date t.

therefore receive a windfall capital gain on their position. It is a zero-sum game.
If all in-the-money call option contracts on a stock have been exercised on or before

the last cum-dividend date, all holders of short positions in the same contracts receive a
request to deliver the stock. If some contracts are left unexercised, however, the OCC
randomly “assigns” short positions that must deliver the stock. The unassigned holders
simply hold on to their options and profit from a capital gain. Arbitrageurs can divert this
capital gain to themselves by simultaneously buying and selling a large number of in-the-
money call options on the same underlying.15 They exercise all long positions and deliver on
all assigned short positions. Since some fraction of the options remains unassigned (owing
to suboptimal exercise by investors), arbitrageurs then capture dividends on their net long
stock positions while staying fully hedged. Usually, two arbitrageurs agree on a dividend
play trade in advance and serve as a counterparty to each other on their arbitrage positions.

Table 1 illustrates the mechanics of the dividend play strategy by means of an exam-
ple. Suppose there is 1 call option contract outstanding, and it is optimal to exercise it.16

Case 1 corresponds to the case when the option is exercised, the holder of the short position
is assigned to deliver the underlying, and there is no profit for the dividend play strategy to
15In 2014, the SEC approved a new rule for the Options Clearing Corporation (OCC). According to the
rule, the exposure in the same contract has to be netted before the OCC assigns the exercise. This made
buying and selling of the same contract impractical for the purposes of dividend play. See the link to the
rule in footnote 7.

16Appendix B.4 provides another example, in which there are multiple contracts outstanding, some of which
are exercised optimally and some are not.
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harvest. Case 2 describes what happens if the contract is left unexercised. Without arbi-
trageur involvement, the short position in the contract does not get assigned, and the option
writer receives a windfall gain of $500 for sure.17 Now consider the entry of an arbitrageur.
The arbitrageur attempts to pocket most of the potentially harvestable profit of $500. To
do so, the arbitrageur buys and simultaneously sells 100 contracts and exercises all of their
long positions. The probability of assignment increases, but, because of the OCC’s random
assignment, with probability 100/101, the arbitrageur holds the short position that does not
get assigned and hence yields a gain. For the original option writer, this probability is now
only 1/101. Hence, the expected gain of the arbitrageur is $495 out of the total gain of
$500 and that of the original option writer drops to $5. A dividend play strategy, therefore,
dilutes the share of the gain that accrues to the original option writer.

In what follows, we detect dividend play activity at a contract level in the full sample
and characterize its importance relative to the overall trading volume on the last cum-
dividend dates.

3.3 Arbitrageur activity in dividend play strategy

We first present our novel measure of arbitrageur activity in the dividend play strat-
egy. Through fee caps, exchanges incentivize dividend play strategies to originate from the
physical floor. To construct our measure of dividend play activity, we therefore exploit OPRA
new detailed trade type flags to isolate option transactions that are executed on the floor.
The trade types that cover most of the dividend play transactions are SLFT and MLFT,
which are single-leg and multi-leg floor trades, respectively. (See Appendix B.2 for a more
detailed description.) Other floor trade types, used infrequently in our sample are MLCT,
MSFL, SLCN, TLFT, and TLFT. We analyze this measure in detail below and show that it
accurately captures dividend play trades in our sample. To our knowledge, this is the most
precise measure of arbitrageur activity in the dividend play strategy in the literature, which
typically uses trading volume on the last cum-dividend dates in excess of the past average
volume.18

In our data, we see bursts of simultaneous buy and sell activity in neighboring-strike
call option contracts, executed usually within several seconds, all coming from the floor. In an
effort to reduce operationally risky dividend play trades, in 2014 the OCC rule change made
it impractical for arbitrageurs to simultaneously buy and sell the same contract. Market
17We assume that, as in the data, each option contract is for 100 shares of underlying.
18Strictly speaking, we should define our measure of arbitrageur activity in dividend play as abnormal floor
volume on the last cum-dividend dates, but our measure is simpler and our results stay virtually the same
if we use the abnormal floor volume measure instead.
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Table 2: Characteristics of activity on last cum-dividend dates

Average ticker dollar
volume ($ million) on

Total market dollar
volume share (%) on

Effective trade cost as
% of total dollar

volume on
cum-dividend date any other date cum-dividend date any other date cum-dividend date any other date

(1) (2) (3) (4) (5) (6)

Panel A. Floor trade
Yes 63.5 1.9 79.4 11.0 0.51 1.00
No 11.6 3.6 20.6 89.0 0.68 0.93
Panel B. Exchange
PHLX or BOX 48.0 1.0 81.8 20.6 0.52 1.03
Any other 10.3 3.3 18.2 79.4 0.65 0.91
Panel C. Option type
Call 51.4 2.1 91.3 48.4 0.53 1.04
Put 5.1 2.3 8.7 51.6 0.73 0.84
Panel D. Moneyness
In the money 45.2 1.2 77.9 20.4 0.45 0.57
At the money 11.9 3.1 20.7 70.6 0.82 0.87
Out of the money 0.8 0.4 1.4 9.0 1.77 2.33
Panel E. Trade size
Large 55.6 3.8 92.8 71.5 0.54 0.92
Small 4.1 1.2 7.2 28.5 0.68 1.00

This table compares option trading activity for tickers that enter our dividend play sample at least once (1,549 stocks and ETFs) on the last
cum-dividend date with any other date. The dividend play sample is described in detail in Appendix B.6. The average volume in columns (1)
and (2) is computed at ticker-day level, and the volume share in columns (3) and (4) is for the entire market. In Panel A, we define floor trades
as trades with SLFT and MLFT OPRA trade types. In Panel D, we define “in the money” as (Midpoint Price − Strike)/Strike > 0.1 for call
options and (Midpoint Price − Strike)/Strike < −0.1 for put options. “At the money” are contracts for which this value is between −0.1 and
0.1, and “out of the money” are all other contracts. In Panel E, we define trade as ‘small’ if the trade size is at or below 10 contracts.

participants have adjusted their trading strategies, and they now simultaneously buy and
sell neighboring contracts, which ultimately achieves the same objective. The trades are
typically prearranged by pairs of arbitrageurs. We see no similar bursts of simultaneous buy
and sell activity in call option contracts in any other OPRA trade types, which assures us
that our measure accurately captures arbitrageur activity in the dividend play strategy.

Table 2 presents descriptive statistics of trading activity on the last cum-dividend
compared to any other dates for dividend-paying stocks and ETFs. We see a considerable
difference in floor trading volume and volume of large trades on the last cum-dividend dates
relative to other dates. Moreover, on the last cum-dividend dates we see colossal spikes in
volume on two exchanges that cap fees for the dividend play strategy: PHLX and BOX.
Breaking the trades by moneyness, we see that the primary increase in volume comes from
trading deep-in-the-money calls (which are more likely to be optimal to exercise). This
pattern is a signature of the dividend play strategy. The utter size of the dividend play
positions is astonishing. Clearly, market participants have been able to circumvent the reg-
ulators’ attempt to curtail this strategy, and profit-driven incentives of arbitrageurs have
pushed the trading volume in dividend play to new highs. We also see an economically
significant decrease in the trading costs on dividend play dates. It becomes considerably
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cheaper to execute large floor trades in call options, and especially on PHLX or BOX. Liq-
uidity is typically better ahead of ex-dividend dates but the categories in which improvement
is most drastic strongly suggest that dividend play trades get executed at prices much closer
to the midpoint.

3.4 Dividend play profits

We now derive exploitable profits from the dividend play strategy. Some of these
profits come from an increase in the open interest, some from investors’ failure to exercise,
and some from the value of early exercise of each contract. With an inflow of inexperienced
investors in the options market, we expect the first two components to increase. We therefore
find it useful to decompose the exploitable profit from a contract into three parts: (i) open
interest, (ii) fraction unexercised, and (iii) early exercise value.

The exploitable dividend play profit on all the interest for each contract is defined as

πt = OIt−1 × ft × EEVt, (12)

where t−1 is the day before the last cum-dividend date, OIt−1 denotes open interest on that
date (measured after all trades, exercises, and assignments on that date), ft ≡ OIt/OIt−1

is the fraction unexercised, and EEVt is the early exercise value, computed below. Note
that the fraction unexercised reflects the fraction of open interest in an option contract
that remains outstanding after the last cum-dividend date (after all trades, exercises, and
assignments on that date). Both EEVt and ft are estimated quantities. Open interest as of
the day before the last cum-dividend day (OIt−1) and fraction not exercised (ft) are available
from OptionMetrics. In rational and frictionless markets, we expect that ft = 0 if EEV > 0.

The early exercise value is model-based, and we rely on the Black-Scholes-Merton
option pricing formula to compute it.19 Denote the expected ex-dividend price of an option
by cex, its strike by K, and the current (cum-dividend) underlying stock price by S. The
expected option ex-dividend price represents the expected time value of the option. Early
exercise value (EEV) is therefore the difference between the current stock price, strike, and
this expected time value of the option: S −K − cex.20 The details of the computation of cex
are in Appendix B.5.
19To ensure our results are robust to the choice of the underlying pricing model, we considered the sample
of broad-index ETFs and computed their corresponding option prices with the Merton and Bates models,
following Bakshi, Cao, and Chen (1997) and Cosma, Galluccio, Pederzoli, and Scaillet (2020). Options on
these ETFs represent over 10% of contracts in our dividend play sample and 55% of potential dividend
play profits. All our results hold in that sample and are available upon request.

20Note that this definition is from Pool, Stoll, and Whaley (2008), and it is equivalent to the definition in
Hao, Kalay, and Mayhew (2009). The latter uses dividend instead: Dividend− cex + Sex −K.
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In the following analyses, we restrict our sample to call option contracts that are
optimal to exercise on cum-dates and refer to it as the dividend play sample. Further details
related to its construction are provided in Appendix B.6, and Table 10 in the Appendix
presents the descriptive statistics for our dividend play sample.

4 Selective entry by arbitrageurs

In this section, we show that arbitrageurs engaging in the dividend play strategy
seemingly leave money on the table by failing to capture arbitrage profits in some call
option contracts. We explore the determinants of this puzzling behavior and show that it is
consistent with our model.

4.1 Case study

November 11, 2020, was the last cum-dividend date for UPS, a high-dividend paying
stock, and a number of calls on UPS were deeply in-the-money and optimal to exercise on
that day. Table 3 focuses on a pair of such contracts, both expiring on November 20, 2020.

Table 3: Case study of arbitrageur activity: Two UPS call options on the last cum-dividend date

Strike EEV OI (t-1) Moneyness, % Spread, % Fraction unexercised Cum-date volume Floor share

Contract 1 160 0.29 1,945 4.2 5.4 0.76 59 0.000
Contract 2 155 0.43 2,486 7.5 4.2 0.47 5,021 0.996

We first compare the trading volume in the contracts on November 11, 2020. Notice
that the trading volume in Contract 2 exceeds that in Contract 1 by two orders of magnitude.
Notice also that Contract 2 has most of the orders from the trading floor on that day, while
Contract 1 has zero. We also see characteristic bursts of floor orders in the transaction-
level data for Contract 2. This means that arbitrageurs engaging in a dividend play trade
exploited Contract 2 but not Contract 1.

Why did the arbitrageurs leave money on the table in Contract 1? The contract had a
high EEV and a large fraction unexercised. Using equation (12) to compute the arbitrageur’s
forgone profits from not participating in Contract 1, we arrive at 1, 945×0.76×0.29×100 ≈
$42, 900, a significant sum.21

Trading costs do not explain the market participants’ reluctance to trade Contract 1.
First, exchanges offer daily fee caps for the dividend play strategy, and so if market makers
21Each option contract in our sample is for 100 shares of the underlying stock or ETF.
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(or other arbitrageurs) entered in Contract 2, they should have also entered in Contract 1.
Second, contract bid-ask spreads in Table 4 are very similar. In the regression framework
that follows, we further control for the option contract’s liquidity and show that trading
costs do not explain why arbitrageurs forgo profitable opportunities.

It is puzzling that arbitrageurs fully exploited the arbitrage opportunity in Contract
2 but not in Contract 1. In the following section, we show that this is the general pattern
in our sample. The unexploited profit in Contract 1 accrued to the writer of this contract,
who could be a market maker or perhaps a retail investor. The latter is less likely because
retail brokerages take an automated action to close short positions that have dividend risk
on behalf of their clients.22 Appendix B.8 presents an excerpt from Robinhood’s Terms and
Conditions to provide an example of such automated action. It is therefore more likely that
the writer of the contract who received the windfall gain was a market maker. The market
maker who is a writer of the contract of course has no incentive to engage in a dividend
play strategy in this contract because this would mean sacrificing his own profit. But it is
puzzling that other market makers or arbitrageurs would not wish to exploit Contract 1 and
reap arbitrage profits.

4.2 Lack of entry by arbitrageurs

Table 4 expands our case study and reports forgone profits by ticker for the top 40
underlying stocks and ETFs sorted by the total size of forgone profits in our sample. We
aggregate our data to the ticker level and report the number of profitable individual contracts
per ticker. Similar to the UPS example above, we assume that arbitrageurs forgo all profits
in contracts they do not enter. For the ones they do enter, we associate the floor share with
harvested profits and the residual share with the forgone. The total amount of harvested
profits in the top 40 tickers in our sample is around $115 million, whereas the total amount of
forgone profit stands at $138 million. For a virtually riskless arbitrage strategy, the amount
of money left on the table is striking.

In the full sample, the values of harvested and forgone profits are $175 million and
$169 million, respectively; hence, the total potential arbitrageur profit from the dividend
play strategy is a little over $340 million. To put the total amount of profits from this
strategy into perspective, it is useful to compare these numbers to arbitrageurs’ profits from
other strategies that exploit retail investor mistakes. de Silva, Smith, and So (2022) study
22Since each option contract is for delivery of 100 shares of the underlying, for small retail investors the
cash outlay needed for purchases of the underlying stock and delivering it could be quite significant. A
brokerage would therefore close a short position if there are not enough funds in the account to buy and
deliver the underlying.
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Table 4: Dividend play profits by ticker

Profit, USD No. contracts Traded volume
(contracts)Ticker Harvested Forgone Fully

harvested
Partly

harvested
Forgone

Ticker (1) (2) (3) (4) (5) (6)

SPY 3,765,752.0 30,554,248.0 368 108 2364 1,173,669
PBR 25,027,390.0 24,927,206.0 290 65 100 10,746,843
AAPL 5,184,242.0 12,630,565.0 559 229 535 2,088,363
IWM 2,023,052.0 7,955,304.0 242 18 479 989,127
EWZ 5,951,460.0 6,715,629.0 381 8 114 4,978,042
XLE 3,506,470.0 6,508,938.0 485 83 236 1,403,244
EEM 11,778,533.0 6,390,539.0 309 14 95 7,351,068
FXI 1,887,811.0 3,948,165.0 140 7 62 2,766,851
EFA 5,818,104.0 3,850,890.0 381 16 82 4,919,976
VALE 3,168,646.0 3,449,403.0 158 28 82 2,857,102
QQQ 120,905.5 2,995,495.0 33 27 761 39,658
XOM 13,650,576.0 2,821,199.0 652 235 316 5,366,309
XLF 576,067.4 2,238,548.0 120 9 118 382,515
MSFT 2,140,104.0 2,150,084.0 573 78 162 1,974,745
ZIM 1,307,877.0 2,065,491.0 10 186 187 689,433
STLA 792,300.8 1,715,769.0 27 2 8 431,932
ET 3,096,240.0 1,435,503.0 224 52 107 2,538,895
KO 510,295.9 1,175,155.0 197 54 167 631,664
T 3,709,919.0 941,254.9 398 80 159 4,983,937
HYG 38,107.4 915,090.3 15 4 92 69,660
IBM 1,747,702.0 894,743.4 467 246 272 936,253
SAN - 848,667.4 0 0 15 -
DIA 199,019.2 774,685.6 120 18 394 38,739
HD 1,013,582.0 757,483.9 229 66 238 339,187
COST 22,711.0 689,246.8 37 6 95 3,348
JPM 3,015,148.0 684,986.9 317 95 221 2,029,246
BHP 246,340.9 678,893.9 84 10 27 120,110
AVGO 1,299,154.0 672,127.0 426 94 190 457,387
QCOM 918,951.4 653,908.4 217 63 193 709,196
LMT 393,198.7 646,559.3 227 64 156 134,903
GOLD 591,433.8 641,651.0 101 7 93 127,439
GILD 636,273.9 617,667.0 164 60 144 822,637
CVX 2,112,260.0 586,699.4 588 174 286 1,430,642
BP 1,799,088.0 558,063.3 377 72 157 1,479,560
RIO 73,278.5 528,318.2 70 11 26 201,442
DVN 1,405,206.0 525,684.6 292 56 84 1,209,128
IYR 245,300.8 518,182.8 142 22 100 196,379
ABBV 1,380,564.0 485,047.8 313 81 175 1,910,387
MO 3,347,873.0 475,222.3 314 98 168 2,087,230
AMLP 169,853.0 473,583.4 75 3 58 57,980

Total 114,670,791.2 138,095,898.6 10,122 2,549 9,318 70,674,226

This table reports the top 40 tickers in terms of dividend play profits forgone by floor traders in our sample. Values are aggregated
across all contracts within a ticker in 11/2019–06/2023. Total dividend play potential profits are computed as in equation (12). To
compute Harvested profits, we multiply the total profits by the floor volume share on the last cum-dividend date and attribute the
residual to Forgone profits. No. of Fully harvested contracts in column (3) is the number of contracts with floor share above 90%, and
in column (5) – with zero floor share.a Traded volume in column (6) is the total floor trading volume in all contracts.

aThe average floor share is over 99% in Fully harvested contracts and 67% in Partly harvested contracts.
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Figure 3: Total and floor trader profit from dividend play strategy

(a) All profitable contracts (b) Contracts with non-zero floor share

This figure illustrates the implied share of potential dividend play profits captured by arbitrageurs on the
trading floor. The solid plot depicts the potential profit from the dividend play strategy, and the dashed
plot depicts the profit harvested by floor traders (arbitrageurs).

retail investor trading in options around earnings announcements and find that this trading
amounts to a wealth transfer of $360 million from retail investors to market makers in their
sample that is seven times longer than ours, running from 2010 to 2021.

Table 4 does not reveal any particular pattern in harvested and forgone profits: There
is a large variation in arbitrageur activity across and within tickers. Next, we examine
possible explanations why some contracts attract arbitrageur entry, while some do not.

To examine drivers of arbitrage activity, we start by contrasting potential and har-
vested profits from the dividend play strategy on the last cum-dividend dates in our sample.
Figure 3 presents potential profits of the dividend play strategy across all outstanding con-
tracts, computed using equation (12), and profits harvested by floor traders. It emerges from
Panel (a), that a large fraction of potential profit, about 50%, remains unharvested. If we
restrict the sample, however, to the contracts with non-zero floor trading volume—that is,
contracts in which we detect dividend play activity—most of the potential profit resulting
from the failure of investors to exercise their options on cum-dividend dates is harvested.
In other words, arbitrageurs selectively exploit profitable contracts and capture most of ex-
ploitable gains (specifically, 83%) in the contracts they enter. This is below 100% and is a
likely artifact of how we compute their share in profits. Importantly, however, arbitrageurs
seem to completely forgo arbitrage profits in contracts they do not enter.

We have now established the following two empirical facts regarding arbitrageur ac-
tivity on dividend play dates in profitable contracts.

Fact 1: Only 57% of profitable dividend play arbitrage opportunities (contracts) attract ar-
bitrageur entry. About 51% of potential profits appear to be left on the table.
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Fact 2: If an option contract attracts arbitrageur entry, arbitrageurs extract most of divi-
dend play profits in that contract.

The selective entry of arbitrageurs in profitable dividend play opportunities is puz-
zling. In what follows, we try to understand the features on the contracts into which market
participants are likely to enter.

4.3 Retail investor presence and arbitrageur activity

The resurgence of dividend play in our sample is likely to be linked to the pandemic-
related retail trading boom, with retail investors making more early exercise mistakes than
other market participants and hence boosting arbitrageur profits in the dividend play strat-
egy. Moreover, the sheer size of the increase in open interest due to retail investor inflow is
likely to have contributed to dividend play profits (see equation (12)). Bryzgalova, Pavlova,
and Sikorskaya (2023) (BPS) document that over 60% of contract trading volume in the U.S.
options market is now retail. We will formally establish below that contracts with higher
retail participation are more profitable to exploit for dividend play arbitrageurs. Yet, despite
their higher profitability, some of these contracts do not attract arbitrageur entry. As we
show below, retail investor buying activity over the past week is a strong predictor of this
selective entry.

We use two measures of retail trading activity in the options market, constructed from
the transaction-level OPRA data. Our first measure, often used in the industry, is the daily
volume share of small trades (up to 10 contracts), Small Share. One could compute it as a
frequency share and as a trading volume share. We adopt the latter definition, as it would be
more relevant for assessing the influence of retail traders on asset prices. Our second measure
is from BPS (Ernst and Spatt (2022) and Hendershott, Khan, and Riordan (2022) propose
the same methodology.) They take advantage of the new trade type codes, introduced by
OPRA on November 4, 2019, to construct a new measure based on transactions that are
likely to be intermediated by wholesalers.23 Wholesalers, such as Citadel, Susquehanna, and
Wolverine, intermediate the overwhelming majority of retail order flow in the U.S. and they
often use the so-called price improvement mechanisms to execute the orders (see BPS for
more details). We borrow their acronym SLIM to denote retail trades and use the volume
share of these trades, SLIM Share, as a measure of retail activity.

How do retail trading trends relate to the last cum-dividend date exercise rates? To
23Specifically, we use the same OPRA type SLAN, which stands for single-leg non-ISO price improvement
auctions. See Appendix B.2 for a description.
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answer this question, we run the following regression:

Yc,t = β1 × shareSLIMc,t + β2 × sharesmallc,t + γ ′Xc,t + αi,t + εc,t (13)

where, for each contract c on the last cum-date t, we consider two dependent variables, Yc,t:
(a) fraction of open interest not exercised by ex-dividend date, and (b) potential profits from
dividend play strategy as defined in Equation (12). Our vector of controls Xc,t includes the
following contract-level variables: log OI, EEV, log dollar trading volume, relative spread,
implied volatility, moneyness, and days to expiration.24 Our specification also includes the
ticker by date fixed effects αi,t. Our measures of retail investor trading are computed over one
trading week before the last cum-date, because more recent data on retail trading is likely
to be also more informative about the arbitrageur (retail counterparty) positions in the
underlying contracts. Furthermore, we get identical results by considering trade imbalance
over the three-day period, immediately preceding the cum-dividend date.

Panel A of Table 5 reports the results of the regression in (13), with the fraction of
open interest unexercised as the outcome variable. We find that there is a strong positive re-
lationship between retail investor trading and the fraction of options that were suboptimally
left unexercised on the last cum-dividend day. While we measure retail investor trading in
two different ways, both variables prove to be strong predictors of failures to exercise the op-
tion. A one standard deviation increase in the share of SLIM or small trades in the contract
in the week preceding the last cum-date increases the fraction unexercised by approximately
1 percentage point, depending on the specification. This result is robust, and the magnitudes
of the coefficients of interest do not change much as we relax the specification of fixed effects
and use ticker-level controls instead (see columns (1)–(3) and (5)).

So far our results demonstrated the link between the overall retail presence in a given
contract and dividend play profit features. Their connection becomes even more apparent in
one considers the direction of retail trading. To do this, we create a dummy variable of the
SLIM buy imbalance, which is equal to one, if there was on average a positive buy imbalance
in SLIM trading volume over the previous trading week, and zero otherwise. We then run
the following regression:

Yc,t = β1 × shareSLIMc,t + β2 ×D(SLIM buy imbalance)c,t + γ ′Xc,t + αi,t + εc,t (14)

where, as in equation (13), for each contract c on the last cum-date t, we consider two
dependent variables, Yc,t: (a) fraction of open interest not exercised by ex-dividend date,
24Since log OI and EEV are components of potential dividend play profits, we do not include them in the
specification in Panel B below.
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Table 5: Dividend play profits and additional measures of retail investor popularity

Dividend play profitability feature

(1) (2) (3) (4) (5)

Panel A. Fraction of OI not exercised, %
SLIM Share 6.270*** 6.196*** 5.151*** 7.041***

(7.75) (7.66) (6.28) (8.80)
Small Share 4.357*** 4.233***

(4.35) (4.24)
D(SLIM buy imbalance) 1.903***

(6.77)

Observations 70,136 70,136 70,136 70,136 70,136
Adjusted R-squared 0.201 0.200 0.201 0.201 0.173

Panel B. Potential profits, log U.S. dollar
SLIM Share 1.803*** 1.806*** 1.248*** 1.903***

(15.73) (15.77) (11.47) (16.51)
Small Share -0.292 -0.310

(-1.51) (-1.63)
D(SLIM buy imbalance) 0.906***

(24.24)

Observations 70,136 70,136 70,136 70,136 70,136
Adjusted R-squared 0.227 0.221 0.227 0.237 0.206

FE Ticker*Date Ticker*Date Ticker*Date Ticker*Date Ticker and Date
Contract controls Y Y Y Y Y
Ticker controls N N N N Y

This table reports estimates of (13) and (14) in our dividend play sample. SLIM Share and Small Share are the
contract-level volume shares of SLIM and small trades, respectively, averaged over one trading week before the
last cum-dividend date. D(SLIM buy imbalance) is the dummy variable of the SLIM buy imbalance, which is
equal to one, if there was on average a positive buy imbalance in SLIM trading volume over the previous trading
week, and zero otherwise. In Panel B, contract controls include log dollar trading volume, relative spread, IV,
moneyness, and days to expiration. In Panel A, they additionally include log OI and EEV. Ticker controls
include underlying price, underlying volatility, underlying relative bid-ask spread, and underlying market cap.
Standard errors are clustered by ticker and date. Robust t-statistics are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1.

and (b) potential profits from dividend play strategy as defined in Equation (12). We also
include the same set of controls Xc,t and fixed effects.

Our findings are presented in Table 5, column (4). Both SLIM Share and SLIM buy
imbalance have a significant and positive effect on the fraction of options left unexercised.
This further supports our hypothesis that it is indeed retail investors who recently bought
call options, who are unlikely to optimally exercise them on the cum dividend date. In
particular, we find that if there was a positive buy imbalance in SLIM over the previous
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trading week, even conditional on the overall level of retail trading, the fraction of open
interest left unexercised is almost 2 percentage points higher.

Panel B of Table 5 considers the regression in (13), but with potential profits as
the outcome variable. It reveals that the coefficients on all measures of retail activity are
positive and significant: A one standard deviation increase in SLIM Share corresponds to a
36% increase in profits, or around $1,700 of higher profit per contract. In other words, the
higher the retail activity in a contract in a week preceding the last cum-dividend date, the
more profitable it is for arbitrageurs to engage in a dividend play in the contract. Higher
profits come from both (a) higher fraction unexercised (documented in Panel A) and (b)
higher open interest in the contracts popular with retail investors. In Panel B, column (4),
we further extend our specification to include SLIM buy imbalance. Similar to Panel A, we
find that a positive buy imbalance of retail trading increases the potential profits from the
dividend play strategy.

We are now ready to test whether arbitrageurs or aware of and exploit retail investor
mistakes in their dividend play arbitrage. We estimate the following regression in the sample
of contracts that should optimally be exercised on cum-date:

sharefloorc,t = β1 × shareSLIMc,t + β2 ×D(SLIM buy imbalance)c,t + γ ′Xc,t + αi,t + εc,t, (15)

where the main regressors are shareSLIMc,t , the average dollar volume share in SLIM trades
over one trading week before the last cum-dividend date t, and the dummy variable indicating
a positive average buy imbalance in SLIM trades over the same period. Xc,t includes the
following contract-level variables: log OI, EEV, log dollar trading volume, relative spread,
implied volatility, moneyness, and days to expiration.25 Our specification also includes the
ticker by date fixed effects αi,t. Table 6 reports the results of estimating the regression.

Table 6 reveals that arbitrageur activity, as measured by floor trading share, volume,
or entry, is positively related to SLIM Share, the measure of retail investor trading over the
preceding week (Panels A–C), yet only in the top profitability tercile. Given our findings
above, one would expect arbitrageurs to enter contracts with a larger SLIM share, all else
equal, as dividend play is more profitable in these contracts. However, this is not the case.
Furthermore, strikingly, arbitrageur activity in a contract is negatively related to the positive
SLIM buy imbalance, and this result is highly statistically significant across all specifications
in Table 6, irrespective of the measure of arbitrageur activity (Panels A–C).

Why would arbitrageurs turn away from contracts that are more likely to remain
unexercised by inattentive retail investors (as we have established in Table 5)? Some dividend
25Since log OI and EEV are components of potential dividend play profits, we do not include them in the
specification in Panel B below.
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Table 6: Arbitrageur activity and retail investor popularity

Floor trading measure
(1) (2) (3) (4)

Panel A: Floor trading share on last cum-date
SLIM Share -0.010 0.008 0.060**

(-0.75) (0.61) (2.36)
D(SLIM buy imbalance) -0.029*** -0.030*** -0.029***

(-7.80) (-8.17) (-4.52)

Observations 70,136 70,136 70,136 22,539
Adjusted R-squared 0.380 0.380 0.380 0.333

Panel B: D(floor share > 0)
SLIM Share -0.011 0.006 0.056**

(-0.80) (0.49) (2.12)
D(SLIM buy imbalance) -0.028*** -0.029*** -0.029***

(-6.95) (-7.35) (-4.44)

Observations 70,136 70,136 70,136 22,539
Adjusted R-squared 0.370 0.371 0.371 0.319

Panel C: Floor trading volume, log
SLIM Share 0.096 0.272** 0.690***

(0.85) (2.40) (2.73)
D(SLIM buy imbalance) -0.273*** -0.299*** -0.315***

(-8.25) (-9.22) (-4.89)

Observations 70,136 70,136 70,136 22,539
Adjusted R-squared 0.473 0.473 0.473 0.371

Sample All All All Top profit tercile

This table reports estimates of (15) in our dividend play sample. Floor trading share on cum-date is
the contract-level volume share of trades executed on the traded floor in the total traded volume on the
last cum-dividend date. SLIM Share and is the contract-level volume share of SLIM trades, averaged
over one trading week before the last cum-dividend date. D(SLIM buy imbalance) = 1 if there was
a buy imbalance in SLIM volume over the previous trading week, on average, and 0 otherwise. All
regressions include ticker-by-date fixed effects and contract controls (log OI, EEV, log dollar trading
volume, relative spread, IV, moneyness, and days to expiration). Top profit tercile includes contracts in
the top tercile of total potential profits. t-statistics are based on standard errors clustered by ticker and
date (in parentheses). *** p<0.01, ** p<0.05, * p<0.1.

play arbitrageurs could be options market makers. These market participants have access
to the exchanges’ trading floors and they may find the strategy attractive. In their role as
market makers, they intermediate retail order flow and in particular write options that retail
investors buy. As option writers, these market makers are then set to receive a windfall
capital gain at zero cost if retail investors do not exercise these option contracts optimally.
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If the contracts remain in their inventory, they represent the “natural markets” for arbitrage
activities of these intermediaries, as defined in our model. (We elaborate on this in Section
4.5 and present evidence in Figure 5 in the Appendix.) The negative sign on SLIM buy
imbalance in Table 6 is consistent with our model’s implications. The test in Panel B is
particularly aligned with the model, indicating that arbitrageurs are less likely to enter
natural markets of other intermediaries.

The specification in column (4) of Table 6 restricts the sample to the top tercile of
most profitable contracts (by total profits) for dividend play arbitrageurs. Standard theories
of limits-to-arbitrage imply that we should see more arbitrageur activity in those contracts.
This is not what our estimation reveals. While the coefficient on SLIM Share does indeed
go up relative to the full-sample regressions, we still see a strong negative effect of SLIM
buy imbalance. The latter is inconsistent with standard limits-to-arbitrage theories but
consistent with the hypothesis that arbitrageurs selectively enter different contracts, even
the most profitable ones, avoiding those that represent natural markets for market makers.

To confirm the robustness of our results, we also pursued an alternative empirical
strategy, based on propensity score matching. Matching is a natural strategy in our setup
because the set of characteristics on which one should match options to keep the expected
profitability – the main driver of arbitrageur entry in the limits-to-arbitrage literature –
constant is well understood. In particular, we match contracts based on open interest, early
exercise value, and moneyness (we also include relative spreads on the option contract and
underlying as well as underlying price). Furthermore, such empirical exercise brings us closer
to the case study presented in Table 3. In Appendix B.9, we show that across the whole
propensity score spectrum, there exist contracts with both zero and positive floor volume.
As shown before, in the latter case, floor traders represent almost 100% of trading, so they
seem to exhaust most of the potential profits. This result again suggests that profitability
characteristics do not predict entry well.

We further highlight arbitrageurs’ selective entry by exploring their participation rate
in the most profitable contracts. We find that arbitrageurs do not enter 37% of contracts in
the top EEV tercile, 40% in the top moneyness tercile, and 34% in the top total potential
profit tercile. The average across these three measures of the attractiveness of an arbitrage
opportunity is 37%. Therefore, in the dividend play arbitrage there is no evidence of the
expected pecking order, in which arbitrageurs exploit the most profitable contracts first,
followed by the second most profitable, etc.26

26One caveat to our analysis is that arbitrageurs may be using a profitability measure different from ours.
We observe some entry (in around 30% of contracts) in cases with EEV between -0.5 and 0. If we include
these contracts in our sample, however, our results on selective entry become even stronger.
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In sum, the analysis in this subsection establishes the link between retail investor
presence and dividend play arbitrage and uncovers the following novel fact about arbitrage
activity.

Fact 3: More profitable arbitrage opportunities do not necessarily attract more arbitrage
activity.

4.4 How many arbitrageurs engage in dividend play?

Earlier in this section, we have documented the facts that arbitrageurs do not enter
some profitable contracts, and if they do enter, they exploit all available profits in a contract.
In this subsection, we examine the contracts that do attract arbitrageur entry and provide
suggestive evidence for the number of arbitrageurs simultaneously engaging in the dividend
play strategy in each contract.

An advantage of our granular, transaction-level data is that we can estimate the
number of arbitrageurs exploiting each arbitrage opportunity, which prior literature has not
done. As mentioned previously, dividend play trades in our data appear as a sequence of
trades (normally five or more), executed within several seconds from the floor of an options
exchange. There are two simultaneously executed legs of this trade by each arbitrageur: One
leg is a sequence of buys of one call option contract and the other a sequence of sells of a
contract with a neighboring strike. Trade sizes within each sequence of trades are typically
the same, but they differ across sequences. (See an example in Appendix B.10.) Differences
in trade sizes across dividend play trade sequences are likely due to execution preferences
of individual arbitrageurs. We therefore use the number of unique trade sizes within each
sequence of trades that we classify as dividend play in a given contract as a proxy for the
number of arbitrageurs engaging in dividend play in that contract. The dividend play trade
is normally executed by a pair of arbitrageurs, simultaneously establishing long and short
positions in the contract. The latter collects (a share of) the windfall gain and the former
facilitates the trade by serving as a counterparty. Our measure identifies the number of such
pairs, and we count each pair as one arbitrageur (because only one party receives the gain).

Figure 4 plots a percentage split of dividend play trades by the number of arbitrageurs
exploiting each contract. It is striking that in the majority of contracts we observe only one
arbitrageur. Only in a small fraction of contracts is the number of arbitrageurs above three.
Since there are no obvious impediments to free entry of other arbitrageurs who regularly
engage in dividend play, it is puzzling that so few arbitrageurs participate in each contract.

Dividend play trades are easy to detect in transaction-level data, which is available to
arbitrageurs from standard datafeeds (e.g., OPRA or those provided by exchanges). There
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Figure 4: Number of arbitrageurs in dividend play trades

This figures depicts percentage split of trades executed on exchange floor by the number of unique trade
sizes, i.e., the number of arbitrageurs. We include only contracts in our dividend play sample. The largest
gray shaded area corresponds to the period of floor closures on all exchanges.

may be some delays with reporting floor trades, but these delays are hardly significant for
our application. Arbitrageurs are therefore fully aware of the presence of other arbitrageurs
in a given contract before they decide to engage in a dividend play trade in it. According
to textbook theories, however, this should not deter them from entering and competing for
profits in the same contract.

The largest gray shaded area in Figure 4 corresponds to the closure of all exchange
floors in the U.S. due to the COVID-19 pandemic. Our measure of floor trading is indeed
zero over this period. Furthermore, the total trading volume on dividend play dates during
the closures is the same as on any other day, which provides additional validation of the
measure. Even when PHLX floor was closed but ARCA and BOX floors were open, the
mean trading volume on dividend play was an order of magnitude lower.

It is clearly also a possibility that our measure of the number or arbitrageurs is inac-
curate and that multiple arbitrageurs use trades of identical size. This caveat aside, we have
established the following stylized fact in our dividend play sample.

Fact 4: Of all arbitrage opportunities (option contracts) that attract arbitrageur entry, 49.6%
are exploited by only one arbitrageur.

Table 7 demonstrates that the number of arbitrageurs engaging in a given contract
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Table 7: Number of arbitrageurs in contracts that attract entry

Percentile

Mean Std. Dev. 1% 10% 25% 50% 75% 90% 99% Obs.

Number of arbitrageurs
- full sample 2.17 1.92 1 1 1 2 3 4 10 41,639
- top EEV tercile 2.22 1.94 1 1 1 2 3 4 9 15,190
- top moneyness tercile 2.17 2.08 1 1 1 1 3 4 10 14,505
- top profit tercile 2.74 2.43 1 1 1 2 3 5 13 15,951

This table reports the distribution of the number of arbirtageurs for all contracts in the dividend play sample
that attract arbitrageur entry.

is generally small. Across all contracts that attract arbitrageur entry, in only 10% of those
contracts, the number of arbitrageurs exceeds 4.

4.5 Possible explanations of selective arbitrageur participation

The evidence summarized in Facts 1–4 is consistent with our model. We could in-
terpret the contracts that do not attract any arbitrageur entry as natural markets of some
intermediaries. Some of the intermediaries in our application are market makers, who nor-
mally have access to the trading floors and who might be interested in the dividend play
strategy. Due to significant economies of scale in market making, this segment is served by
a small number of firms.27 Market makers intermediate retail investor transactions, and in
particular write options that retail investors buy. Prior to the dividend play date, they may
accumulate an inventory of such written options. Because of early exercise mistakes, they
are then set to benefit from the windfall capital gains, unless another arbitrageur engages in
dividend play in these contracts. This parallels exactly our model’s definition of a natural
market. Based on the data from Nasdaq exchanges (which included PHLX), Figure 5 in the
Appendix confirms that market makers are indeed net sellers on average of call option con-
tracts in our dividend play sample on the 100 most mentioned tickers on the WallStreetBets
over the past week, which is a proxy for retail investor popularity.

Owing to daily fee caps on dividend play on options exchanges, the entry costs are
fixed, as in our model. Our model predicts that we should therefore observe no entry in the
natural markets of options market makers, and our Fact 1 is consistent with that. Moreover,
our empirical tests show that arbitrageurs are less likely to enter profitable contracts that
27See, e.g., https://www.barrons.com/articles/market-makers-in-equity-options-are-vanishing

-1496459364. In a recent paper, Ernst and Spatt (2022) list market makers currently operating in the
U.S. options market, and their number is small.
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have positive retail buy imbalances (and, hence, are natural markets for market makers
who are the likely option writers for these contracts). For profitable contracts that are in
neither intermediary’s inventory, we should observe entry of only one arbitrageur. Consistent
with the model, Fact 4 indeed documents that, conditional on entry, in the majority of the
contracts we observe entry by only one arbitrageur. The version of the model that is closest
to the data is the one discussed at the end of Section 2, in which intermediaries enter
only one of the last two markets, leaving the other to the other intermediary. In the data,
arbitrageurs operate in pairs, each pocketing a gain in one contract, while facilitating the
other arbitrageur’s gain in another contract.

We note that sometimes we observe entry by two or more arbitrageurs in a given
contract. We interpret this not as a reversion to Nash equilibrium (punishment) but as
occasional “misfires.” Tacit collusion does not require any explicit agreements, and so occa-
sional misfires are likely to happen. This is especially true in our application because there
are many contracts that may be profitable to exploit on a dividend play date (the median in
our sample is 81). Also, unlike in our model, there is some noise in the data. For example,
floor transactions are likely to be reported late and so an arbitrageur may not realize that
another arbitrageur has already entered that contract.

Fact 3 is also consistent with our model and is inconsistent with standard theories
of arbitrage. Unless the arbitrageurs are playing a cooperative strategy, there should be a
pecking order in which they enter profitable contracts, with most profitable being exploited
first.

We note that the repeated game assumption of the model hardly requires any defense
in our application. Most of the dividend play transactions in our sample occur on the
floor on only two exchanges, PHLX and BOX (Table 2). Given that most of trade in
options is electronic, modern-day exchange floors are populated by a small number of market
participants, who specialize in floor trading and frequently interact with each other. Finally,
while our assumption is that dividend play profits are observed with certainly does not
hold in the data, with risk-neutral intermediaries it is sufficient to replace certain profits by
expected profits in our model for the results to go through.

Other theories could potentially rationalize the phenomena that we document. In the
rest of this section, we explore alternative explanations of the selective entry by arbitrageurs,
based on the existing limits-to-arbitrage literature. Trading costs is the most natural one.
First, per-contract exchange fees might prevent arbitrageurs from fully exploiting the avail-
able arbitrage opportunities. However, there exist dividend-play specific fee caps on PHLX
and, more recently, BOX exchanges, in which most of the dividend play activity takes place
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(Table 2).28 Those fee caps limit the total costs paid by a market maker or other arbitrageur
on a particular day at the options class level: Harvesting the profit from an additional
contract would not increase payments to the exchanges once the limit is reached. Second,
given that dividend play usually requires two participating parties, it is highly likely that
they would agree on the transaction price that allows for mutually beneficial profit sharing.
There is no clear reason why they would omit any particular contract from their agreement
due to its otherwise lower liquidity. Finally, in the analysis above, we always control for
contract liquidity or match on contract relative spread. It is therefore unlikely that the
contracts in which arbitrageurs do not engage in dividend play are systematically less liquid.

Another potential explanation is that arbitrageurs expose themselves to risk (or hedg-
ing cost) if the delta of the options they buy and sell is not 1. So less deep in-the-money
options on more volatile underlyings would be riskier or costlier. However, options in our
dividend play sample are normally deep in-the-money. Our sample of arbitrage opportuni-
ties has a mean (median) moneyness of over 50% (25%) and the top tercile by profitability
has mean (median) moneyness close to 46% (22%), and yet we still do not observe arbitrage
activity in many of those contracts. Moreover, we observe in our data that traders simulta-
neously establish offsetting long and short positions, and so they are fully hedged. There
can also be financing costs, which would likely be increasing in the time to expiration. It
is also possible that the arbitrageurs’ capital constraints bind. However, most regulatory
requirements typically involve netted positions, which are relatively low given the symmetric
and fully hedged nature of the strategy. It is therefore not clear why capital constraints
may bind unless they bind due to the arbitrageurs’ internal risk management guidelines. Re-
latedly, such large trades are associated with high operational risks. According to SIFMA,
Bank of America Merrill Lynch incurred a $10 million loss due to a human error when ex-
ecuting the dividend play strategy.29 Still, such explanations cannot produce the variation
in floor trader activity within and across tickers that we document: Table 4 illustrates that
there are many profitable contracts in which floor traders do not participate at all.

Finally, it has been documented that even sophisticated market players exhibit limits
to attention (Kacperczyk, Nieuwerburgh, and Veldkamp (2016)). Indeed, there may be
hundreds of potentially profitable contracts available to dividend play on each cum-dividend
day (thousands, in the case of SPY). Perhaps traders simply cannot evaluate all relevant
pricing parameters, enter into an agreement with each other, and process the necessary
number of trades? First, it is not clear why other exchange members do not enter to reap
28See the PHLX pricing schedule: https://listingcenter.nasdaq.com/rulebook/phlx/rules/phlx

-options-7 and BOX fee schedule: https://boxoptions.com/regulatory/fee-schedule/.
29See https://www.reuters.com/article/us-usa-options-apple-idUSKBN0IQ2FA20141106.
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arbitrage profits if such limits exist. However, we proceeded to test this hypothesis more
formally. To do so, we used the number of stock-level EPS (Hirshleifer, Lim, and Teoh
(2009)) and macroeconomic announcements (Savor and Wilson (2014)) as proxies for limits
to attention and did not find that those mattered for floor trader activity. These additional
results are available upon request.

One alternative explanation that we cannot rule out is that some profits are left
unexploited because of the stigma and reputational costs associated with the dividend play
strategy. The SEC has clearly signaled its disapproval of the strategy in its 2014 rule aimed at
making the strategy impractical. (See footnote 7.) Reputational costs could explain the lack
of entry of new arbitrageurs. However, they cannot explain why arbitrageurs who regularly
engage in this strategy, and hence are willing to incur reputation costs, still leave money on
the table. Finally, we cannot rule out an explanation based on clearing fees. Clearing fees
are negotiated bilaterally and they are not available in the public domain.

5 Discussion and policy implications

The dividend play arbitrage does not serve any particularly useful purpose in finan-
cial markets. It neither improves liquidity nor aids price discovery. It simply reallocates
profits from the original option writers to arbitrageurs. In the process of doing so, however,
it dramatically inflates trading volume and hence skews various important statistics that
market participants rely on, while exposing arbitrageurs and potentially exchanges to large
operational risk. With its 2014 regulation, the SEC attempted to put an end to this strategy.

Our paper demonstrates that market participants found a way around the 2014 SEC
regulation, leading to a resurgence of the strategy, and highlights the difficulties of devising
effective regulation in financial markets. Two previous papers on dividend play, Hao, Kalay,
and Mayhew (2009) and Pool, Stoll, and Whaley (2008), written before the SEC regulation,
argue that arbitrageurs engage in dividend play by simultaneously opening long and short
positions in the same call option contract. The 2014 regulation affected clearing rules, and
it was no longer beneficial for arbitrageurs to long and short the same contract. In our
transaction-level data, we clearly see that after the regulation, dividend play arbitrageurs
simultaneously long and short contracts with neighboring strikes. For the purposes of com-
puting regulatory risk exposures, these positions are simply netted to zero. There is some
economic risk exposure resulting from this trade because the deltas of the long and short
positions are not exactly the same, but the short-horizon nature of the trade and the ability
of arbitrageurs to delta hedge their economic exposure, if desired, still makes it a worthwhile
strategy, leading to its resurgence in the data.
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We propose an alternative way to curtail the strategy. The problem lies in the ran-
dom assignment by the OCC of options writers who are required to deliver the underlying.
Dividend play is a play on this random assignment. An alternative would be the First-in,
First-out (FIFO) rule, similar to a regulation imposed by the National Futures Association
(NFA) in the U.S. on trading international currencies and currency derivatives (forex). It
requires that currency traders close out their oldest positions first, before closing out more
recent positions. This rule would favor the original option writers over the dividend play
arbitrageurs.30

Finally, the new generation of investors may be lacking in financial education that
is required to trade options. Investor mistakes in sophisticated financial decisions such as
early exercise of an option generate transfers to arbitrageurs or market makers. It is not clear
whether retail investing platforms have the appropriate incentives to prevent their customers
from making trading mistakes. The question of optimal options exercise requires knowledge
of option pricing models, which retail investors are likely to lack. One possibility would
be to require retail brokerages to report options’ early exercise values to investors. The
early exercise value could be computed from the Black-Scholes model. Another possibility
is to make automatic early exercise on last cum-dividend dates, when it is optimal to do
so, a default option for investors, from which they can opt out if they wish. This simple
enhancement would prevent retail investor losses of around $340 million in our sample.31

More generally, the literature on investor protection has long been concerned about complex
investment products and incentives of intermediaries.32 The complexity of options contracts
from the viewpoint of an average retail investor and the potentially misaligned incentives of
intermediaries call for enhancements to investor protection on retail trading platforms.

6 Conclusion

In this paper we contribute to the literature on arbitrage in financial markets by
introducing repeated game considerations. Arbitrageurs in our model are large and their
number is limited because of economies of scale and entry costs, and they interact repeat-
edly with each other. Repeated game considerations enlarge the set of possible equilibrium
outcomes and, in particular, give rise to tacit collusion. Arbitrageurs enter into only a subset
30We thank Terry Hendershott for suggesting this idea to us.
31While $340 million is the total potential profit to be exploited by dividend play arbitrageurs, a large
fraction of it is likely to come from retail investors, as sophisticated investors are likely to exercise their
options optimally.

32See e.g., Barbu (2022), Bhattacharya, Illanes, and Padi (2019), Egan (2019), Heimer and Simsek (2019),
Célérier and Vallée (2017), and Campbell, Jackson, Madrian, and Tufano (2011).
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of markets, which reduces their combined entry costs and thus increases social welfare.
Our empirical application mimics the setup of the model. We consider dividend

play, a specific arbitrage strategy in the options market for which we can accurately track
arbitrageur activity. Dividend play arbitrageurs execute their trades on the floor of the
exchange, which is typically populated by a limited number of players, and they interact
repeatedly. Needless to say, there are entry costs associated with floor trading, although
these costs are lower for intermediaries who are already present in the options markets,
such as for example market makers. We document that arbitrageurs routinely do not take
part in dividend play in a large number of exploitable options contracts, even the most
profitable ones. Moreover, if arbitrageurs do decide to engage in a dividend play in a given
contract, their number is usually limited to only one arbitrageur. These implications are
consistent with our model. We also consider alternative explanations for the selective entry
of arbitrageurs, most of which we are able to rule out.

Dividend play arbitrage is not the only setting that satisfies our model’s assumptions.
For example, in the options market there are five further arbitrage strategies, facilitated by
exchanges via fee caps, which are also executed on the floor. More broadly, financial
markets with entry costs and natural economies of scale, intermediated by a limited number
of players, may present other applications of our model, as strategic interactions cannot be
ruled out in such markets. More opaque and concentrated markets, for example, over-the-
counter markets, may also present suitable applications, as repeated game considerations
are more likely to arise in those environments. For example, Bolton and Oehmke (2013)
conjecture that there may be scope for tacit collusion in credit derivative markets,33 while
the 2012 LIBOR fixing scandal has exposed collusion in the interbank lending market (Hou
and Skeie (2014)).

33The number of dealers in these markets is typically small. For the U.S. credit default swap market, Eisfeldt,
Herskovic, Rajan, and Siriwardane (2023) estimate it to be around 13 and that the volumes are highly
concentrated.
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A Appendix: Proofs

Lemma 1 Suppose that the best response of Intermediary 1 is to enter all three markets,
i.e., kj1 > 0, j = 1, 2, 3. The best response of Intermediary 1 is then given by
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Lemma 2 Suppose that the best response of Intermediary 1 is to enter all three markets,
i.e., kj1 > 0, j = 1, 2, 3. The best response of Intermediary 2 is then given by
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Proof of Lemmas 1 and 2.
We first prove Lemma 1.The problem defined in (4)–(5) is a convex constrained op-

timization problem, and the (linear) resource constraint (5) will be satisfied with equality.
The first-order conditions are:
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where λ is the Lagrange multiplier on the resource constraint (5). The first-order conditions
can be rewritten as
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Substituting (16)–(18) into the resource constraint (5) and simplifying, we arrive at
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Using the resource constraint of Intermediary 2 (satisfied with equality), (6), defining Λ1 ≡(
1
λ

)
and solving the above equation for Λ1, we arrive at
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Substituting Λ1 for
(

1
λ

)1/2
in (16)–(18) and rearranging terms, we arrive at the statement in

the lemma. A proof of Lemma 2 is analogous. �

Proof of Proposition 1. Nash equilibria are given by the intersection of the interme-
diaries’ best responses. Combining the best responses from Lemmas 1 and 2, we arrive at
the system of equations (8)–(11) in the statement of the proposition. �

Proof of Corollary 1. Given symmetry of the intermediaries’ payoffs in the first two
markets, we look for a Nash equilibrium in which k1

1 = k1
2 = k2

1 = k2
2. Similarly, given the

symmetry of the intermediaries’ payoffs in market M3, we look for a Nash equilibrium in
which, additionally, k3

1 = k3
2. Under these conditions, the system of equations in Proposi-

tion 1 simplifies significantly, leading to the expressions in part (i) of the corollary.
In the symmetric Nash equilibrium, the intermediaries enter all three markets and

they equally split arbitrage opportunities in each of the three markets. The total fixed cost
that each of them pays is only f + f ∗ because the fixed cost of entry into the intermediaries’
natural market is zero.

The equilibrium presented in part (i) of the corollary exists if the intermediaries’ fixed
costs are not too high so that entry in all three markets is profitable for them. The condition
specified in the corollary guarantee that. �

Proof of Proposition 2. In a stage game, the Pareto efficient equilibrium that is
symmetric in payoffs is an allocation resulting from maximizing social welfare subject to the
resource constraints:
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s.t. k1
i + k2

i + k3
i ≤ 1, i ∈ {1, 2}, (20)

where we have assigned the intermediaries identical Pareto weights µ1 = µ2 = 0.5. Since the
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fixed costs of market entry in marketsM1 andM2 can be reduced to zero, it is straightforward
to see that in the symmetric Pareto optimal allocation only Intermediary 1 should enter
M1 and only Intermediary 2 market M2. The harvested profits from these markets are
identical and are equal to A. Similarly, it is inefficient from the social welfare perspective
for both intermediaries to pay the fixed cost of entry into market M3. It is therefore welfare
maximizing that they agree to flip a fair coin to decide which one of the two intermediaries
enters the market and which one stays out. Their payoff from this strategy is the same
in expectation, and they each earn A∗/2 − f ∗/2 in market M3. Note that this payoff is
higher than that achieved with mixed strategies whereby the intermediaries enter marketM3

with some probability and otherwise stay away, because under these strategies sometimes
both intermediaries end up entering the market, each paying a fixed cost of entry, and
sometimes none of them would enter and therefore the arbitrage opportunity A∗ would be
left unharvested. Under the strategies described in the proposition, in all three markets
the intermediaries earn A + A∗/2− f ∗/2 each in expectation, which is the maximum profit
possible in a symmetric solution to (19)–(20).

In markets in which the intermediaries are present, the allocation of resources kji ,
i, j ∈ {1, 2} are indeterminate, as long as k3

i > 0 for the intermediary who is chosen to enter
market M3. We focus on the solution in which the intermediaries allocate zero resources
to their natural markets, since they do not need to commit any resources to harvest the
arbitrage opportunity there. Any positive amount of resource committed to market M3

by the (only) entrant k3
i ∈ (0, 1] guarantees the that that intermediary captures the entire

arbitrage opportunity. �

Proof of Proposition 3. To prove that the proposed equilibrium is indeed a subgame
perfect equilibrium of the game, let us explore a deviation from it and show that it is not
profitable in an infinitely repeated game. If the intermediaries play cooperatively, each
intermediary’s payoff is

∞∑
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δt
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= 1
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2

)
(21)

in expectation (Proposition 2). If an intermediary deviates, its payoff is
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where the term before the infinite sum is the payoff from a deviating and the infinite sum
is the payoff in the ensuing punishment phase. The payoff in (21) is greater or equal to the
payoff in (22) if and only if

δ ≥
A− f − f∗

2
A

,

which establishes the result in the proposition. �

Proposition 4 (Tacit collusion equilibrium with four markets) Consider the follow-
ing symmetric trigger strategy:

Cooperative phase: Cooperate and

(i) allocate no resources to marketsM1 andM2. That is, (k1
1t, k

2
1t) = (0, 0), and (k1

1t, k
2
1t) =

(0, 0), so that the natural intermediaries capture all of arbitrage opportunities in their
natural markets;

(ii) Intermediary i enters market M3, committing k3
it > 0 and harvesting the entire arbi-

trage opportunity A∗, and does not enter market M4.

(iii) Intermediary j, j 6= i, enters market M4, committing k4
jt > 0 and harvesting the entire

arbitrage opportunity A∗, and does not enter market M3.

Punishment for deviation: If the opponent deviated from the above cooperative strategy in
the previous period, enter all markets (M1, M2, M3, and M4) and play purely competitively
forever, which results in a Nash equilibrium in each stage game thereafter.

If both players play the trigger strategy above and δ ≥ A+A∗/2−f−f∗

A+A∗/2 , the symmetric
Pareto optimal (or tacit collusion) equilibrium is a subgame perfect equilibrium of the repeated
game.

Proof of Proposition 4. To prove that the proposed equilibrium is indeed a subgame
perfect equilibrium of the game, let us explore a deviation from it and show that it is not
profitable in an infinitely repeated game. If the intermediaries play cooperatively, each
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intermediary’s payoff is

∞∑
t=0

δt (A+ A∗ − f ∗)

= 1
1− δ (A+ A∗ − f ∗) . (23)

If an intermediary deviates, its payoff is

2A+ 3
2A
∗ − f − 2f ∗ +

∞∑
t=1

δt (A+ A∗ − f − 2f ∗)

= 2A+ 3
2A
∗ − f − 2f ∗ + δ

1− δ (A+ A∗ − f − 2f ∗) , (24)

where the term before the infinite sum is the payoff from a deviating and the infinite sum
is the payoff in the ensuing punishment phase. The payoff in (21) is greater or equal to the
payoff in (22) if and only if

δ ≥
A+ A∗

2 − f − f
∗

A+ A∗

2
,

which establishes the result in the proposition. �

B Appendix: Empirical Analysis

B.1 Market makers’ position in the top 100 most mentioned tick-
ers on WallStreetBets

To assess a ticker’s popularity among retail investors, we collect data from WallStreetBets
subreddit of reddit.com popular with retail investors. To construct a measure of ticker pop-
ularity on WallStreetBets, we follow the methodology from BPS. In particular, we use infor-
mation on both posts and comments available from the Pushshift Reddit Dataset, the largest
publicly available Reddit data set, that includes all posts and comments on the platform and
is continuously updated in real time. From monthly dump files for the period November 2019
to December 2022, we collect both original submissions (posts) and comments in the Daily
Discussion and Unpinned Daily Discussion threads of the WallStreetBets forum. We use
the list of unique historical tickers from CRSP, excluding tickers that might coincide with
popular words used on the forum (“USA," “YOLO," “IPO," “MOON," etc.), and omit any
lower-case mentions. Our WallStreetBets mentions measure is simply a count of mentions of
a ticker on a given day.
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Figure 5: Market makers’ position in the top 100 most mentioned tickers on WallStreetBets on
the PHLX exchange

This figures depicts the smoothed market makers’ trade position in the top 100 most mentioned tick-
ers on WallStreetBets on the PHLX exchange. The market makers’ trade position in option contract
c on date t is computed using the End-of-Day Nasdaq PHOTO data as ∆Market maker positionc,t =∑t

s=t−5(Market maker opening buysc,s − Market maker opening sellsc,s + Market maker closing buysc,s −
Market maker closing sellsc,s). We aggregate the positions across contracts on the top 100 most mentioned
tickers on WallStreetBets. To smooth the data, we fit a local second-order polynomial on 3/4 of observa-
tions.

B.2 OPRA trade types

The following table presents OPRA trade types, together with their descriptions,
implemented on November 4, 2019. We also include the corresponding Trade Condition IDs
from LiveVol, our data provider.
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Table 8: OPRA trade types for transactions in U.S. options exchanges

OPRA Type
Description

OPRA Message Type LiveVol Trade
Condition ID

OPRA Condition Description

AUTO 18 Transaction was executed electronically. Prefix appears solely for information; process as a regular trans-
action.

CANC 40 Transaction previously reported (other than as the last or opening report for the particular option contract)
is now to be cancelled.

CBMO Multi Leg Floor Trade of
Proprietary Products

133 Transaction represents execution of a proprietary product non-electronic multi leg order with at least 3
legs. The trade price may be outside the current NBBO.

CNCL 41 Transaction is the last reported for the particular option contract and is now cancelled.

CNCO 42 Transaction was the first one (opening) reported this day for the particular option contract. Although
later transactions have been reported, this transaction is now to be cancelled.

CNOL 43 Transaction was the only one reported this day for the particular option contract and is now to be cancelled.

ISOI 95 Transaction was the execution of an order identified as an Intermarket Sweep Order. Process like normal
transaction.

LATE 13 Transaction is being reported late, but is in the correct sequence; i.e., no later transactions have been
reported for the particular option contract.

MASL Multi Leg Auction against
single leg(s)

125 Transaction was the execution of an electronic multi leg order which was “stopped” at a price and traded
in a two sided auction mechanism that goes through an exposure period and trades against single leg
orders/ quotes. Such auctions mechanisms include and not limited to Price Improvement, Facilitation or
Solicitation Mechanism.

MESL Multi Leg auto-electronic
trade against single leg(s)

123 Transaction represents an electronic execution of a multi Leg order traded against single leg orders/ quotes.

MLAT Multi Leg Auction 120 Transaction was the execution of an electronic multi leg order which was “stopped” at a price and traded
in a two sided auction mechanism that goes through an exposure period in a complex order book. Such
auctions mechanisms include and not limited to Price Improvement, Facilitation or Solicitation Mechanism.

MLET Multi Leg auto-electronic
trade

119 Transaction represents an electronic execution of a multi leg order traded in a complex order book.

continuation on the next page
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Table 8: OPRA trade types for transactions in U.S. options exchanges (cont.)

MLCT Multi Leg Cross 121 Transaction was the execution of an electronic multi leg order which was “stopped” at a price and traded
in a two sided crossing mechanism that does not go through an exposure period. Such crossing mechanisms
include and not limited to Customer to Customer Cross and QCC with two or more options legs.

MLFT Multi Leg floor trade 122 Transaction represents a non-electronic multi leg order trade executed against other multi-leg order(s) on
a trading floor. Execution of Paired and Non-Paired Auctions and Cross orders on an exchange floor are
also included in this category.

MSFL Multi Leg floor trade
against single leg(s)

126 Transaction represents a non-electronic multi leg order trade executed on a trading floor against single leg
orders/ quotes. Execution of Paired and Non-Paired Auctions on an exchange floor are also included in
this category.

OPEN 6 Transaction is a late report of the opening trade and is out of sequence; i.e., other transactions have been
reported for the particular option contract.

OPNL 7 Transaction is a late report of the opening trade, but is in the correct sequence; i.e., no other transactions
have been reported for the particular option contract.

OSEQ 2 Transaction is being reported late and is out of sequence; i.e., later transactions have been reported for
the particular option contract.

REOP 21 Transaction is a reopening of an option contract in which trading has been previously halted. Prefix
appears solely for information; process as a regular transaction.

SCLI Single Leg Cross ISO 117 Transaction was the execution of an Intermarket Sweep electronic order which was “stopped” at a price
and traded in a two sided crossing mechanism that does not go through an exposure period. Such crossing
mechanisms include and not limited to Customer to Customer Cross.

SLAI Single Leg Auction ISO 115 Transaction was the execution of an Intermarket Sweep electronic order which was “stopped” at a price and
traded in a two sided auction mechanism that goes through an exposure period. Such auctions mechanisms
include and not limited to Price Improvement, Facilitation or Solicitation Mechanism marked as ISO.

SLAN Single Leg Auction Non
ISO

114 Transaction was the execution of an electronic order which was “stopped” at a price and traded in a two
sided auction mechanism that goes through an exposure period. Such auctions mechanisms include and
not limited to Price Improvement, Facilitation or Soliciation Mechanism.

SLCN Single Leg Cross Non ISO 116 Transaction was the execution of an electronic order which was “stopped” at a price and traded in a two
sided crossing mechanism that does not go through an exposure period. Such crossing mechanisms include
and not limited to Customer to Customer Cross and QCC with a single option leg.

continuation on the next page
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Table 8: OPRA trade types for transactions in U.S. options exchanges (cont.)

MLCT Multi Leg Cross 121 Transaction was the execution of an electronic multi leg order which was “stopped” at a price and traded
in a two sided crossing mechanism that does not go through an exposure period. Such crossing mechanisms
include and not limited to Customer to Customer Cross and QCC with two or more options legs.

SLFT Single Leg Floor Trade 118 Transaction represents a non-electronic trade executed on a trading floor. Execution of Paired and Non-
Paired Auctions and Cross orders on an exchange floor are also included in this category.

TASL Stock Options Auction
against single leg(s)

131 Transaction was the execution of an electronic multi leg stock/options order which was “stopped” at
a price and traded in a two sided auction mechanism that goes through an exposure period and trades
against single leg orders/ quotes. Such auctions mechanisms include and not limited to Price Improvement,
Facilitation or Solicitation Mechanism.

TESL Stock Options auto-
electronic trade against
single leg(s)

130 Transaction represents an electronic execution of a multi Leg stock/options order traded against single leg
orders/ quotes.

TFSL Stock Options floor trade
against single leg(s)

132 Transaction represents a non-electronic multi leg stock/options order trade executed on a trading floor
against single leg orders/ quotes. Execution of Paired and Non-Paired Auctions on an exchange floor are
also included in this category.

TLAT Stock Options Auction 124 Transaction was the execution of an electronic multi leg stock/options order which was “stopped” at a price
and traded in a two sided auction mechanism that goes through an exposure period in a complex order
book. Such auctions mechanisms include and not limited to Price Improvement, Facilitation or Solicitation
Mechanism.

TLCT Stock Options Cross 128 Transaction was the execution of an electronic multi leg stock/options order which was “stopped” at a
price and traded in a two sided crossing mechanism that does not go through an exposure period. Such
crossing mechanisms include and not limited to Customer to Customer Cross.

TLET Stock Options auto-
electronic trade

127 Transaction represents an electronic execution of a multi leg stock/options order traded in a complex order
book.

TLFT Stock Options floor trade 129 Transaction represents a non-electronic multi leg order stock/options trade executed on a trading floor in
a Complex order book. Execution of Paired and Non-Paired Auctions and Cross orders on an exchange
floor are also included in this category.

This table reports OPRA trade types and their descriptions. The type of each transaction in U.S. options exchanges has to be classified
using a type description from the table and reported to OPRA. This reporting requirement was implemented on November 4, 2019.
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B.3 Abnormal trading volume on cum-dividend dates: Further
examples

This appendix contains two further examples of abnormal trading volume on cum-
dividend dates. The figures below plot daily trading volume of options on Microsoft, MSFT,
and on the largest S&P 500 ETF, SPY.

Figure 6: Abnormal trading volume on last cum-dividend dates for MSFT

This figure plots daily trading volume for all call option contracts on MSFT, in millions of U.S. dollars, as
reported in OptionMetrics. The dashed lines indicate the last cum-dividend dates.
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Figure 7: Abnormal trading volume on last cum-dividend dates for SPY

This figure plots daily trading volume for all call option contracts on SPY, in millions of U.S. dollars, as
reported in OptionMetrics. The dashed lines indicate the last cum-dividend dates.

B.4 Dividend play: Another example

Table 9 provides an additional example illustrating the mechanics of the dividend play
strategy. Case 1 corresponds to the case when all 1,000 outstanding contracts are exercised
and all 1,000 short positions get assigned, so there is no profit for a dividend play strategy
to harvest. Case 2 describes what happens if 500 of 1,000 outstanding contracts are left
unexercised. Without arbitrageur involvement, half of the short positions in the contract
get assigned; the remaining positions deliver a gain of $0.5 per share and $25,000 in total
for the unassigned short positions, a gain to the original customers with short positions.
Now consider the entry of market makers. The market makers attempt to recover most
of the potentially harvestable profit of $25,000. To do so, they buy and simultaneously sell
5,000 contracts and exercise all their long positions. The probability of assignment increases,
but, because of the OCC’s random assignment, some of the market makers’ short positions
remain unassigned and hence yield a gain. In our example, market makers harvest $20,850
out of the total gain of $25,000. To divert a larger fraction of the total gain from the original
customers with short positions, market makers simply increase the number of contracts they
buy and sell.
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Table 9: Dividend play: Another Example

OIt−1

New
posi-

tions(t)
Available
for ex.

No. ex-
ercised

Prob.
Assign.

No.
assign.

No. not
assign.

Gain
per
share

Total gain on
unassign.
positions

OIt
Fraction
unex.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Case 1. Optimal exercise
Customer 1000 0 1000 1000 100% 1000 0.00 0.5 0 0.00

Case 2. Suboptimal exercise

Case 2.1. Without dividend play
Customer 1000 0 1000 500 50% 500 500 0.5 25000 500 0.5

Case 2.2. With dividend play
Customer 1000 0 1000 500 916.7 83.33 0.5 4166.7
Arbitrageurs 0 5000 5000 5000 4583.3 416.67 0.5 20833.3
Total 1000 5000 6000 5500 92% 5500 500 25000 500 0.5

This table illustrates the dividend play strategy. Date t refers to the last cum-dividend date and OIt stands for the open interest on date
t. This table is similar to Table 1 in Pool, Stoll, and Whaley (2008).

B.5 Dividend play: Technical details

We compute the expected call option ex-dividend price using the Black-Scholes-
Merton formula, as follows:

cex = Sexe
−y(T−t)N(d1)−Ke−r(T−t)N(d2),

d1 = 1
σ
√
T − t

ln

(
Sex
K

+
[
r − y + σ2

2

]
(T − t)

)
,

d2 = d1 − σ
√
T − t,

y = Dividendex/Sex,

where Sex is the expected price after the stock goes ex-dividend, that is, price at close on the
last cum-dividend day minus expected dividend; T − t is time to maturity in years, that is,
difference in the expiration date and the current date in days divided by 360; K is the contract
strike; σ2 is the annualized implied volatility34; r is the interpolated maturity-specific interest
rate provided by OptionMetrics (annualized %); and Dividendex is the expected dividend
after the ex-date.35
34We use the daily contract-level implied volatility from OptionMetrics. If it is missing, we interpolate it
from the neighboring strikes.

35We assume that its size is equal to the current dividend if the stock pays one more dividend after the
current dividend until the option expires and 0 otherwise.
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B.6 Dividend play sample: Data filters and calculated variables

We use our dataset described in Section 3.1 together with the following filters to
arrive at the final dividend play sample. We include all call option contracts with EEV > 0.
Furthermore, since our valuation might be imperfect, we add a market-based filter of the
optimality of exercise: We keep only contracts with a decline in open interest on the last
cum-dividend date.36 By implication, we have only contracts with non-zero open interest on
the last cum-dividend date and on the day before that.

Following the early papers on dividend play, we remove contracts with no trading
volume on the last cum-dividend date. Additionally, we remove contracts expiring on or
immediately after the ex-dividend date.37

To measure arbitrageur activity, we use floor trading share, defined as the total volume
in transactions of OPRA types SLFT and MLFT, divided by the total volume on the last
cum-dividend date.38 For both SLIM and Small Share, we compute a one-week moving
average and use its lagged value on the cum-dividend date. We use the same rolling measures
for the retail activity variables described in the main text, as well as volume, spread, and
implied volatility controls.

We compute relative spread quoted at the time of each option trade as 2(best ask −
best bid)/(best ask+best bid) (relative to the midpoint price). We compute moneyness of the
trade as 0.5(underlying bid+ underlying ask)/strike− 1.

36This is consistent with Hao, Kalay, and Mayhew (2009).
37The last filter does not change results significantly.
38In unreported tests, we confirm that using dollar volume-based measures instead yields similar results.
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Table 10: Dividend play sample descriptive statistics

Mean Median St. Dev. p1 p99

Fraction of OI unexercised, % 19.59 2.56 29.80 0.00 98.98
Floor trades volume share on last cum-date 0.53 0.80 0.47 0.00 1.00
D(floor share > 0) 0.57 1.00 0.49 0.00 1.00
SLIM Share 0.13 0.06 0.17 0.00 0.75
D(SLIM buy imbalance) 0.21 0.00 0.40 0.00 1.00
Small Share 0.85 1.00 0.21 0.00 1.00
Internalized volume in underlying (share) 0.17 0.16 0.05 0.06 0.300
OI, log 4.09 3.97 2.17 0.00 9.31
Early exercise value (EEV), $ 0.54 0.33 0.80 0.00 3.44
Market EEV, $ 0.07 0.02 0.37 -0.46 1.09
Dollar potential profit 4,748.06 51.55 66,982.07 0.00 75,324.36
Dollar volume, log 1.72 1.48 1.23 0.00 5.89
Relative spread 0.08 0.04 0.11 0.00 0.57
Implied volatility, annualized 0.36 0.33 0.24 0.00 1.12
Moneyness 0.50 0.25 0.96 0.02 3.94
Days to expiry 54.21 17.00 103.57 3.00 582.00

This table reports descriptive statistics for all contracts in the dividend play sample (72,486 observa-
tions). SLIM Share and Small Share are the contract-level volume shares of SLIM and small trades,
respectively, averaged over one trading week before the last cum-dividend date. D(SLIM buy imbal-
ance)=1 if there was an average buy imbalance in SLIM trading volume over one trading week before the
cum-dividend date, and 0 otherwise. The share of internalized volume in the total trading volume in the
underlying is computed as a ticker-level non-ATS OTC share of volume executed in the non-ATS OTC
space relative to the total trading volume, averaged over one trading week before the last cum-dividend
date. WSB mentions is the number of underlying ticker mentions on the WallStreetBets forum, av-
eraged over one trading week before the last cum-dividend date. Relative spread is the option contract
quoted spread at the time of the trade relative to the midpoint price. Implied volatility is as reported in
LiveVol, interpolated using nearest strikes if missing. Moneyness is measured as (Price−Strike)/Strike.
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B.7 Trading volumes across options exchanges

Table 11: Distribution of trading volume across exchanges in the dividend play sample

Exchange name Exchange code Share in total dollar volume, % Share in floor dollar volume, %
(1) (2)

Philadelphia Stock Exchange PHLX 78.58 83.19
Boston Stock Exchange BOX 16.53 16.74
American Stock Exchange AMEX 0.14 0.04
NYSE Arca Exchange ARCA 0.17 0.03
Nasdaq Exchange NASD 0.05 0.00
Chicago Board Options Exchange CBOE 0.87 0.00
International Securities Exchange ISE 2.96 0.00
ISE Mercury MRX 0.03 0.00
ISE Gemini GEMX 0.04 0.00
C2 C2 0.07 0.00
MIAX Options Exchange MIAX 0.14 0.00
NASDAQ OMX BX Options NASDBX 0.02 0.00
BATS Trading BZX 0.05 0.00
Direct Edge X EDGX 0.22 0.00
MIAX PEARL PEARL 0.03 0.00
MIAX Emerald Options Exchange EMLD 0.10 0.00

This table reports the distribution of the total trading volume in the dividend play sample on dividend play dates across the options exchanges
in the United States. Column (1) reports the share of dollar volume executed on each exchange in the total dollar volume, while column (2)
reports the same focusing on floor trades.

B.8 Dividend risk and automatic actions of retail brokerages

This appendix presents an example of an automatic action to close short positions
exposed to dividend risk on the last cum-dividend dates undertaken by retail brokerages.
The example is from the Robinhood Terms and Conditions.

Figure 8: Excerpt from Robinhood’s Terms and Conditions
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B.9 Selective participation in matched contracts

Figure 9: Floor traders’ entry across propensity score levels

This figure depicts the number of contracts with and without floor trades across the scores of propensity to
have floor trades. The propensity scores are based on the following characteristics: log OI, EEV, relative
spread, moneyness, underlying price, and underlying relative bid-ask spread. We report the balance tests in
Figure 9.

Figure 10: Covariate balance for Floor share in Figure 9
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B.10 Example of Dividend Play Trade Sequences

Figure 11 illustrates dividend play trade bursts in two call options on UPS expiring
on 01/15/21, all registered from PHLX floor. In a contract with strike 110, there are many
trades with the same size, often separated by only a few seconds. Furthermore, trades in
the neighboring strike 105 have the same time stamps. Given that these trades have the
same size within a contract and are so close to each other in time, we interpret them as one
arbitrageur engaging in dividend play (a pair of arbitrageurs entering pre-agreed trades).

Figure 11: Examples of dividend play trade sequences in call options on UPS

(a) Strike 110 (b) Strike 105
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